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6.1 | Vector Fields Examples of Vector Fields
VeCtor «Eucherls g

Figure 6.2(a) shows a graVitational field exerted by two astronomical objects, such as a star and a planet or a planet and

a moon. At any point in the figure, the vector associated with a point gives the net gravitational force exerted by the two
objects on an object of unit mass. The vectors of largest magnitude in the figure are the vectors closest to the larger object.

The larger object has greater mass, so it exerts a gravitational force of greater magnitude than the smaller object.
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Figure 6.2(b) shows the velocity of a river at points on its surface. The vector associated with a given point on the river’s

surface gives the velocity of the water at that point. Since the vectors to the left of the figure are small in magnitude, the
- = — " -
water is flowing slowly on that part of the surface. As the water moves from left to right, it encounters some rapids around

a rock. The speed of the water increases, and a whirlpool occurs in part of the rapids.
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Definition %B V_C_'{l()f f‘ﬂfj'lﬂn

A vector field F in R? is an assignment of a two-dimensional vector F(x, y) to each point (x, y) of a subset D

of R' . The subset D is the domain of the vector field.

A vector field F in R~ is an assignment of a three-dimensional vector F(x, y. z) to each point (x. y, z) of a subset

Dof R>. The subset D is the domain of the vector field. 3D

2 . . . . b . . . .
Let G(x,y)=x"yi—(x+y)j be a vector field in [R“. What vector is associated with the point
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Sketch the vector field F(l }.) - ',%'l it '},'.] @ 6 Draw the radial field F(l }) 3l 2']
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Sketch the vector field F(x, y) = (y, —x ). do C(é\l)l(g'e ro “Q‘l—l 0/]
e

r

(x, y) F(x, y) (x, y) F(x. y) (x, y) F(x, y)

(1, 0) (0, —1) (2, 0) (0, =2) (1, 1) §1,~1 3
—_"

(0, 1) (1.0) (0, 2) (2,0) (-1, 1) ¢ Lk )

e —
(<1,0) (o 15 (=2, 0) (0,2) (1, ~1) {=1,.1)
0, =1) (=1,.0) 0, =2) (=2:0 ) (1, =1) (~1,—~1
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l%‘ﬁl 6.3 Sketch vector field F(x, y) = (==2y, 2x ) . Is the vector field radigl, 1‘0{atioﬂal,_;}r neither?
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% 6.4 Vector field v(x, y) = (4lxl. 1 ) models the velocity of water on the surface of a river. What is the
hd »r o

speed of the water at point (2. 3)? Use meters eters per secon second as the units.
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Sketching a Vector Field in Three Dimensions
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Figure 6.7 A visual representation of yector field
P v )= (L Lg)-
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Describing a Gravitational Vector Field
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Newton’s law of gravitation states that F = -G
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Definition Vf-l <ix f{j) Vf :<f)(; fi;_fi‘?

A vector field F in R? orin R? isa gradient field if there exists a scalar function f suchthat Vf = F.
-——-—-_-—_

Sketching a Gradient Vector Field

Use technology to plot the gradient vector field of £
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Vf = F. In this situation, f is called a potential function for F.
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6.10  verify that f(x.y) = x?}*“ + x is a potential  function for  velocity field
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Theorem 6.2: The Cross-Partial Property of Conservative Vector Fields
S

Let F be a vector field in two or three dimensions such that the component functions of F have continuous second-

order mixed-partial derivatives on the domain of F.

JP _ 00

If F(x,y)= (P(x.y). Ok, y)) is a conseyative vector field in R%, then T % If

\:-—j

F(x, v.2)= ( P(x.y.2), Ox. y, 2), R(x, y, z) ) isa conservative vector field in R> . then

dy  ox 0z
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6.2 | Line Integrals &
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L ()( \ A S Figure 6.12 Curve C has been divided into n pieces, and a poin
I'd inside each piece has been chosen.
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Let f be a function with a domain that includes the smooth curve C that is parameterized by

e —————T

r(f) = ( x(7), y(1), z(t) ) . a <t < b. The scalar line integral of f along C is .
C is n2D
I
f Sy s =, 'wlm,._zl f(P)As,

6.5)

if this limit exists (# and As; are defined as in the previous paragraphs). If C is a planar curve, then C can be
-ﬂ

represented by the parametric equations x = x(f), y= y(f), and a <t < b. If Cis smooth and f(x, y) is a function

R
C S ) Z-Dl

of two variables, then the scalar line integral of f along C is defined similarly as

n
f Cf( x, yds = lim_ '21 fIP¥ )As,,

[

if this limit exists.
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Figure 6.13 The area of the blue sheet is /Cf(_.r. y)ds.
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[ heorem 6.3: Evaluating a Scalar Line Integra
f be a continuous function with a domain that includes the smooth curve C with parameterization

r(t1). a <t <b. Then

—
@)
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L

Let f be a continuous function with a domain that includes the smooth curve C with parameterization

r(t) = ( x(t), y(#), z(t) ), a <t £ b. Then
e e e ——

ffh V. ds—-f f(r(r)) (1 (7))~° +(1 (rJ"-H..H ‘dr
a l_-__—d—————f

Similarly,
r(ﬂﬂ<)(&))3(t)7 ff (X, ”ﬂ'ﬁ—f FaO)N (& ()2 + (' () dr

if Cis a planar curve and f is a function of two variables.
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9 s
Evaluate /C(,t‘“ + y© + ;)ds. where C the  curve  with  parameterization
By )

r(t) = (sin(31), cos(31) ), 0<r <& I(‘f) < ;COS ?‘t’ _9‘1'4% 7 ({f (4) I’ 5

X(E)=<5 %t V4 :
U((g (o Bt j( SMZ(%) reos (34) 27’) 2 dt

I (o) = —<0 1—>




Evaluating a Line Integral

Find the value of integral f(,r2+}-‘2+:'.}d5, where C is part of the helix parameterized by
C

r{t) = <C‘OST. sint, t), 0<t<2m ‘LLT Z 2 -t
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