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Learning Objectives

6.4.1 Apply the circulation form of Green’s theorem.
6.4.2 Apply the flux form of Green’s theorem.

ﬁ

6.4.3 Calculate circulation and flux on more general regions.
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Extending the Fundamental Theorem of Calculus

Recall that the Fundamental Theorem of Calculus
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fﬂF (x)dx = F(b) — F(a). ool

fCVf dr = f(x(b)) — f(r(a)).
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Theorem 6.12: Green’s Theorem, Circulation Form

Let D be an open, simply connected region with a boundary curve C that is a piecewise smooth, simple closed curve
oriented countelclocl\wme (Figure 6.33). Let F = ( P, Q) be a vector field with component functions that have

continuous partial derivatives on D. Then, <F a>' l<cl)(,c:|3>

95 F-dr= 95 Pdl-!—de = [[,(Qx — Py)dA. (6.13)
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Applying Green’s Theorem over a Rectﬂnglea WQ MJ \Lﬁ (a{o‘ ’odf

wer C
Calculate the line integral F <’_&' Uj> '( e |A')'c0l/9|| ] ; (!L
55(1 ydx + (y — ’%dx Cz
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where C is a rectangle with vertices (1, 1), (4, 1), (4,5), and (I, 5) oriented counterclockwise. ‘{ CL{
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Applying Green’s Theorem to Calculate Work

Calculate the work done on a particle by force field

F(x,y)= (y+ ’LSHI- ﬂ"@—\: GV cngdl"‘

as the particle traverses circle X2+ 1 = 4 exactly onck in the couhterclockwise direction, starting and endmg

at point (2, 0). -
e yi = FU - L dreq y b
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een’s theorem to calculate line integral

ET 6.34 Use Gr
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&> 635 Find the area of the region enclosed by the curve with parameterization

r(f) = (sinzcost, sint),0<t<x.
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Flux Form of Green’s Theorem
Theorem 6.13: Green’s Theorem, Flux Form

Let D be an open, simply connected region with a boundary curve C that is a piecewise smooth, simple closed curve
that is oriented counterclockwise (Figure 6.38). Let F = ( P. Q ) be a vector field with component functions that

- w ‘ ' .
have continuous Dartlal derivatives on an open region contaimning D. ThEll.
F-Nds = // P, + QydA. (6.15)
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Applying Green’s Theorem for Flux across a Circle P)‘ — i %_._. L

¥

Let C be a circle of radius r centered at the origin (Figure 6.39) and let F(x, y) = ( x, y ) . Calculate the flux
across C.
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Applying Green’s Theorem for Flux across a Triangle

Let S be the triangle with vertices (0. 0), (I, 0 nd (0, 3) 01‘1@11ted£lw;i_s_e (Figure 6.40). Cal-{lllit’aei!le ‘
flux of F(x, y)= (P(x, y), Ox,y)) = (-‘f +y ) acrossS. CW‘A S i, -T:
| FNds = — \( (PetQy)dh
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fimilar o conservatice  fie i

The following statements are all equivalent ways of defining a source-free field F = ( P. Q ) on a simply
ﬁ
connected domain (note the similarities with properties of conservative vector fields):

f—/v—\

1. The flux F - Nds across any closed curve C is zero.

—TT
e il

2. If Cy and C, are curves in the domain of F with the same starting points and endpoints, then

F-Nds = - F - Nds. In other words, fluxisdindependent of path.
2 2

3. There is a stream function g(x, y) for F. A stream function for F = ( P, Q ) is a function g such that P = g,

and Q = —g,. Geometrically, F = (a, b) is tangential to the level curve of g at (a, b). Since the gradient of g is
perpendicular to the level curve of g at (a, b), stream function g has the propertor any

point (a. b) in the domain of g. (Stream functions play the same role for source-free fields that potential functions
~ F

play for conservative fields.)

Pl Vv F o source g
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(a) (b)
Figure 6.42 (a) In this image, we see the three-level curves of g and vector field F. Note
that the F vectors on a given level curve are tangent to the level curve. (b) In this image, we
see the three-level curves of g and vector field Vg. The gradient vectors are perpendicular to

the corresponding level curve. Therefore, F(a. b) @ Vg(a. b) = 0 for any point in the

domain of g.

¢ | Slide19 ~| 5 & —




X tosy+ hiy)
Jﬂl;fertm‘hk with rispeee te Y

—XGiny ¥ h (4) ==Xy
Hy)=0, (y)=C.




Satlsfylng Laplace s Equation
Laplac

For vector fle]d F(

a potential function for F, and verify that the potential functio

F=CP Q> ?)U =Q,, mpl/cs ‘HMTT_ Conser vatve.

,',' ‘S Coﬂfff(/"l#“(

function that satisfies Laplace’s equation is called a harmonic function.
S ————

y; WL :
y)= (e'siny, e*cosy ), verify that the field is both conservative and source free, find

fF F
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Green’s Theorem on General Regions

(a) b)
Figure 6.44 (a) Region D with an oriented boundary has three holes. (b) Region D
split into two simply connected regions has no holes.

[f F is a vector field defined on D, then Green’s theorem says that
525 F-dr = F-dr+ F-dr
oD dD 0D~

[ (@x— PydA.
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