Vectors

Definition

A vector is a quantity that has both magnitude and direction.

Definition

Vectors are said to be **equivalent vectors** if they have the same magnitude and direction.

Definition

The product $k\mathbf{v}$ of a vector \mathbf{v} and a scalar k is a vector with a magnitude that is |k| times the magnitude of \mathbf{v} , and with a direction that is the same as the direction of \mathbf{v} if k > 0, and opposite the direction of \mathbf{v} if k < 0. This is called **scalar multiplication**. If k = 0 or $\mathbf{v} = \mathbf{0}$, then $k\mathbf{v} = \mathbf{0}$.

triangle inequality.

$$|| v + w || \le || v || + || w ||$$

$$V = \langle 2,3 \rangle$$
 $W = \langle 1,4 \rangle$
 $V + W = \langle 2+1, 3+4 \rangle$

Rule: Component Form of a Vector

Let **v** be a vector with initial point (x_i, y_i) and terminal point (x_t, y_t) . Then we can express **v** in component form as $\mathbf{v} = \langle x_t - x_i, y_t - y_i \rangle$.

2.4 Vector **w** has initial point (-4, -5) and terminal point (-1, 2). Express **w** in component form.

Definition

Let $\mathbf{v} = \langle x_1, y_1 \rangle$ and $\mathbf{w} = \langle x_2, y_2 \rangle$ be vectors, and let k be a scalar.

Scalar multiplication:
$$k\mathbf{v} = \langle kx_1, ky_1 \rangle$$
 2 $\langle l, 3 \rangle = \langle l, 6 \rangle$

Vector addition:
$$\mathbf{v} + \mathbf{w} = \langle x_1, y_1 \rangle + \langle x_2, y_2 \rangle = \langle x_1 + x_2, y_1 + y_2 \rangle$$

2.5 Let $\mathbf{a} = \langle 7, 1 \rangle$ and let \mathbf{b} be the vector with initial point (3, 2) and terminal point (-1, -1).

a. Find
$$\| \mathbf{a} \| = \sqrt{7^2 + 1^2} = 7\sqrt{2}$$

b. Express **b** in component form.

c. Find
$$3\mathbf{a} - 4\mathbf{b}$$
.
 $3\mathbf{a} - 4\mathbf{b} = 3 < 7,1 > -4 < -4, -3 > -4 < -4, -3 > -4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 < -12 > 4 <$

Theorem 2.1: Properties of Vector Operations

Let **u**, **v**, and **w** be vectors in a plane. Let r and s be scalars.

ii.
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 Commutative property

iii. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ Associative property

iii. $\mathbf{u} + 0 = \mathbf{u}$ Additive identity property

iv. $\mathbf{u} + (-\mathbf{u}) = 0$ Additive inverse property

v. $r(s\mathbf{u}) = (rs)\mathbf{u}$ Associativity of scalar multiplication

vi. $(r + s)\mathbf{u} = r\mathbf{u} + s\mathbf{u}$ Distributive property

vii. $r(\mathbf{u} + \mathbf{v}) = r\mathbf{u} + r\mathbf{v}$ Distributive property

viii. $1\mathbf{u} = \mathbf{u}, 0\mathbf{u} = 0$ Identity and zero properties

A **unit vector** is a vector with magnitude 1.

$$\mathbf{u} = \frac{1}{\|\mathbf{v}\|} \mathbf{v}$$
 We say that \mathbf{u} is the unit vector in the direction of \mathbf{v}

2.8 Let $\mathbf{v} = \langle 9, 2 \rangle$. Find a vector with magnitude 5 in the opposite direction as \mathbf{v} .

$$\frac{1}{\|V\|} = \frac{\langle 9, 27 \rangle}{\sqrt{9^2 + 2^2}} = \frac{\langle 9, 27 \rangle}{\sqrt{85}}$$

$$W = \pi \left(\frac{V}{||V||} \right) = \frac{\pi}{\sqrt{8\pi}} \langle 9, 27 \rangle = \left(\frac{9\sqrt{8\pi}}{17} \right)^{-2\sqrt{8\pi}} \rangle$$
unit vector
in the opposite
direction of V

Figure 2.18 The standard unit vectors \mathbf{i} and \mathbf{j} .

$$\mathbf{v} = \langle x, y \rangle = \langle x, 0 \rangle + \langle 0, y \rangle = x \langle 1, 0 \rangle + y \langle 0, 1 \rangle = x\mathbf{i} + y\mathbf{j}.$$

2.9 Let $\mathbf{a} = \langle 16, -11 \rangle$ and let \mathbf{b} be a unit vector that forms an angle of 225° with the positive *x*-axis. Express \mathbf{a} and \mathbf{b} in terms of the standard unit vectors.

2.10 An airplane flies due north at an <u>airspeed</u> of 550 mph. The wind is blowing from the northwest at 50 mph. What is the ground speed of the airplane?

 $a = h + c^2 - 2b \cos A$

14. The vector \mathbf{v} has initial point P(1, 1) and terminal point Q that is on the x-axis and left of the initial point. Find the coordinates of terminal point Q such that the magnitude of the vector \mathbf{v} is $\sqrt{10}$.

$$\sqrt{10} = 1^2 + x^2$$

$$x = 3$$

43. Calculate the coordinates of point D such that ABCD is a parallelogram, with A(1, 1), B(2, 4), and C(7, 4).

$$\overrightarrow{AD} = \langle x^{-1}, y^{-1} \rangle$$
 $\overrightarrow{BC} = \overrightarrow{C} - \overrightarrow{B} = \langle 7 - 2, 4 - 4 \rangle$
 $= \langle 5, 0 \rangle$

$$(41)$$

$$A$$

$$D(x,y)$$

$$(612)$$

$$AD = \langle x-1, y-1 \rangle = \langle 5, 0 \rangle$$
 $x-1=5$
 $y-1=0$
 $y=1$

Definition

The **three-dimensional rectangular coordinate system** consists of three perpendicular axes: the *x*-axis, the *y*-axis, and the *z*-axis. Because each axis is a number line representing all real numbers in \mathbb{R} , the three-dimensional system

is often denoted by \mathbb{R}^3 .

3-space

R2 plane

2.11 Sketch the point (-2, 3, -1) in three-dimensional space.

y=-3 is a point in 2-dimension y=-3 is a plane in 3-dimension (x and z we free) (x,-3,z)parallel to xz plane.

Theorem 2.2: The Distance between Two Points in Space

The distance d between points (x_1, y_1, z_1) and (x_2, y_2, z_2) is given by the formula

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

2.12 Find the distance between points $P_1 = (1, -5, 4)$ and $P_2 = (4, -1, -1)$.

$$d = \sqrt{(4-1)^2 + (-1-(-5))^2 + (-1-4)^2}$$

$$= \sqrt{3^2 + 4^2 + 5^2} = \sqrt{50} = 5\sqrt{2}$$

2.13 Write an equation of the plane passing through point (1, -6, -4) that is parallel to the *xy*-plane.

$$7=-4$$
 is the plane parallel to xy-plane it passes through $(1,-6,-4)$

Rule: Equation of a Sphere

The sphere with center (a, b, c) and radius r can be represented by the equation

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2.$$

This equation is known as the **standard equation of a sphere**.

Rule: Equation of a Sphere

The sphere with center (a, b, c) and radius r can be represented by the equation

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2.$$

This equation is known as the **standard equation of a sphere**.

2.14 Find the standard equation of the sphere with center (-2, 4, -5) containing point (4, 4, -1).

$$\Gamma = |CP| = \sqrt{(4-(-2))^{2} + (4-4)^{2} + (-1-(-5))^{2}} = \sqrt{36+0+16} = \sqrt{52}$$

$$(X+2)^{2} + (y-4)^{2} + (2+5)^{2} = \Gamma^{2} = 52$$

2.16 Describe the set of points that satisfies (y + 2)(z - 3) = 0, and graph the set.

Let S = (3, 8, 2) and T = (2, -1, 3). Express \overrightarrow{ST} in component form and in standard unit form.

$$\overrightarrow{ST} - \overrightarrow{T} - \overrightarrow{S} = (2-3, -1-8, 3-2)$$

$$= (-1, -9, 1)$$

$$= -1-9j+k$$

Rule: Properties of Vectors in Space

Let $\mathbf{v} = \langle x_1, y_1, z_1 \rangle$ and $\mathbf{w} = \langle x_2, y_2, z_2 \rangle$ be vectors, and let k be a scalar.

Scalar multiplication: $k\mathbf{v} = \langle kx_1, ky_1, kz_1 \rangle$

Vector addition: $\mathbf{v} + \mathbf{w} = \langle x_1, y_1, z_1 \rangle + \langle x_2, y_2, z_2 \rangle = \langle x_1 + x_2, y_1 + y_2, z_1 + z_2 \rangle$

Vector subtraction: $\mathbf{v} - \mathbf{w} = \langle x_1, y_1, z_1 \rangle - \langle x_2, y_2, z_2 \rangle = \langle x_1 - x_2, y_1 - y_2, z_1 - z_2 \rangle$

Vector magnitude: $\| \mathbf{v} \| = \sqrt{x_1^2 + y_1^2 + z_1^2}$

Unit vector in the direction of v: $\frac{1}{\parallel \mathbf{v} \parallel} \mathbf{v} = \frac{1}{\parallel \mathbf{v} \parallel} \langle x_1, y_1, z_1 \rangle = \langle \frac{x_1}{\parallel \mathbf{v} \parallel}, \frac{y_1}{\parallel \mathbf{v} \parallel}, \frac{z_1}{\parallel \mathbf{v} \parallel} \rangle$, if $\mathbf{v} \neq \mathbf{0}$

2.19 Let $\mathbf{v} = \langle -1, -1, 1 \rangle$ and $\mathbf{w} = \langle 2, 0, 1 \rangle$. Find a unit vector in the direction of $5\mathbf{v} + 3\mathbf{w}$.

Wit vector = $\langle 1, -5, 8 \rangle$ = $\langle 1, -5, 8 \rangle$ = $\langle 1, -5, 8 \rangle$ in that $\sqrt{1^2 + 5^2 + 8^2}$ = $\sqrt{1 + 25 + 64}$ = $\sqrt{10}$ 4

$$=\frac{110}{30}(1,-5,8)=(\frac{10}{30},-\frac{10}{6},\frac{4\sqrt{10}}{15})$$

80. Q(0, 7, -6) and M(-1, 3, 2), where M is the

midpoint of the line segment
$$PQ$$

$$Q=?$$

$$Q(X,y,z)$$

$$-1 = \frac{0+x}{2}$$

$$3 = \frac{7+y}{2} \qquad 2 = \frac{-6+z}{2}$$

$$9 = -1 \qquad z = 10$$

$$P(-2, -1, 10)$$

82. Find initial point *P* of vector $\overrightarrow{PQ} = \langle -9, 1, 2 \rangle$ with the terminal point at Q(10, 0, -1).

$$\overrightarrow{PQ} = \overrightarrow{Q} - \overrightarrow{P} = \langle 10,0,-1 \rangle - \langle x,y,z \rangle = \langle -9,1,2 \rangle$$

$$\langle 10-x,-y,-1-z \rangle = \langle -9,1,2 \rangle$$

$$x=19, y=-1, z=-3$$

109. The points A, B, and C are collinear (in this order) if the relation $\|\overrightarrow{AB}\| + \|\overrightarrow{BC}\| = \|\overrightarrow{AC}\|$ is satisfied. Show that A(5, 3, -1), B(-5, -3, 1), and C(-15, -9, 3) are collinear points.

110. Show that points A(1, 0, 1), B(0, 1, 1), and C(1, 1, 1) are not collinear.