$y=f(x)$ from $x=a$ to $x=b$, revolved around the x-axis:
$\Delta A=2 \pi f(x) \Delta s$

\sum_{b}
$\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$

Figure 1.25 A surface of revolution generated by a parametrically defined curve.

$$
S=2 \pi \int_{a}^{b} y(t) \frac{\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t}{\Delta s}
$$

1.9 Find the surface area generated when the plane curve defined by the equations

$$
x(t)=t^{3}, \quad y(t)=t^{2}, \quad 0 \leq t \leq 1
$$

$$
\begin{aligned}
& \text { is revolved around the } x \text {-axis. } \\
& \begin{array}{ll}
\text { is revolved around the } x \text {-axis. } \quad x^{\prime}(t)=3 t^{2} \quad y^{\prime}(t)=2 t & d t \cdot t^{3}=t^{2} t d t \\
2 \pi \int_{0}^{1} t^{2} \sqrt{\left(3 t^{2}\right)^{2}+(2 t)^{2}} d t=2 \pi \int_{0}^{1} t^{2} \sqrt{9 t^{4}+4 t^{2}} d t \quad=\left(\frac{4-4}{9}\right) \frac{d u}{18}
\end{array} \\
& =2 \pi \int_{0}^{1} t^{3} \sqrt{9 t^{2}+4} d t \quad=2 \pi \int_{4}^{13}\left(\frac{u-4}{9}\right) u^{t / 2} \frac{d u}{\frac{18}{3}} \\
& \begin{array}{l}
u=9 t^{2}+4 \quad t^{2}=\frac{u-4}{9} \quad=\left.\frac{\pi}{81}\left(\frac{\left(1^{5 / 2}\right.}{5 / 2}-4 \frac{u^{3 / 2}}{3 / 2}\right)\right|_{4} ^{13} \\
d u=18 t d t
\end{array} \\
& =\frac{\pi}{81}\left[\left(\frac{2}{5} 169 \sqrt{13}-\frac{8}{3} 13 \sqrt{13}\right)-\left(\frac{64}{5}-\frac{64}{3}\right)\right]
\end{aligned}
$$

Theorem 1.4: Converting Points between Coordinate Systems

Given a point P in the plane with Cartesian coordinates (x, y) and polar coordinates (r, θ), the following conversion formulas hold true:

$$
\begin{equation*}
\frac{x=r \cos \theta}{r^{2}=x^{2}+y^{2}} \text { and } \frac{y=r \sin \theta}{\text { and } \tan \theta=\frac{y}{x} .} \quad \theta=\arctan \left(\frac{y}{x}\right) \tag{1.7}
\end{equation*}
$$

These formulas can be used to convert from rectangular to polar or from polar to rectangular coordinates.

Convert $(-8,-8)$ into polar coordinates and $\left(4, \frac{2 \pi}{3}\right)$ into rectangular coordinates.

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}}=\sqrt{8^{2}+8^{2}}=8 \sqrt{2} \\
& \tan \theta=\frac{y}{x}=\frac{-8}{-8}=1 \quad \theta=\frac{\pi}{4} \\
& \quad \theta=\frac{7 \pi}{4} \\
& \left(8 \sqrt{2}, \frac{5 \pi}{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(4, \frac{2 \pi}{3}\right) \text { into rectangular coordinates. } \\
& r_{\theta}(x, y)
\end{aligned} \frac{2 \pi}{3}=120^{\circ}
$$

$$
x=r \cos \theta=4 \cos \frac{2 \pi}{3}=4\left(-\frac{1}{2}\right)=-2
$$

$$
y=r \sin \theta=4 \sin \frac{2 \pi}{3}=4 \frac{\sqrt{3}}{2}=2 \sqrt{3}
$$

$$
\begin{aligned}
& \cos 120^{\circ}=-\cos 60^{\circ} \\
& \sin 120^{\circ}=\sin 60^{\circ}
\end{aligned}
$$

1.12 Create a graph of the curve defined by the function $r=4+4 \cos \theta$.

1.13 Rewrite the equation $r=\sec \theta \tan \theta$ in rectangular coordinates and identify its graph.

Theorem 1.6: Area of a Region Bounded by a Polar Curve
Suppose f is continuous and nonnegative on the interval $\alpha \leq \theta \leq \beta$ with $0<\beta-\alpha \leq 2 \pi$. The area of the region bounded by the graph of $r=f(\theta)$ between the radial lines $\theta=\alpha$ and $\theta=\beta$ is

$$
\begin{equation*}
A=\frac{1}{2} \int_{\alpha}^{\beta}[f(\theta)]^{2} d \theta=\frac{1}{2} \int_{\alpha}^{\beta} r^{2} d \theta . \tag{1.9}
\end{equation*}
$$

$$
\frac{\theta}{2 \pi} \cdot \pi r^{2}=\frac{\theta}{2} r^{2}
$$

$$
\begin{aligned}
& \Delta A=\frac{\Delta \theta}{2} r^{2} \beta \\
& A=\int_{\alpha}^{\beta} \frac{d \theta}{2} r^{2}
\end{aligned}
$$

$$
\begin{aligned}
& A=\frac{1}{2} \int_{a}^{1} r^{2} d \theta=\frac{1}{2} \int_{0}^{2 \pi}(1-\cos \theta)^{2} d \theta \\
& =\frac{1}{2} \int_{0}^{2 \pi}\left(1-2 \cos \theta+\cos ^{2} \theta\right) d \theta=\left.\frac{1}{2}\left[\theta-2 \sin \theta+\frac{\sin 2 \theta}{4}+\frac{\theta}{2}\right]\right|_{0} ^{2 \pi} \\
& \int \cos ^{2} \theta d \theta=\int\left(\frac{\cos 2 \theta+1}{2}\right) d \theta=\frac{\sin 2 \theta}{4}+\frac{\theta}{2}+c \\
& \cos 2 \theta=2 \cos ^{2} \theta-1 \quad=\frac{1}{2}[3 \pi-0+0-(0-0+0)]=\frac{3 \pi}{2}
\end{aligned}
$$

1.16 Find the area inside the circle $r=4 \cos \theta$ and outside the circle $r=2$.

$$
\begin{aligned}
& 4 \cos \theta=2 \\
& \cos \theta=\frac{1}{2} \\
& \theta=\frac{\pi}{3} \text { OR } \frac{\pi \pi}{3}
\end{aligned}
$$

$$
A=\frac{1}{2} \int_{\alpha}^{\beta}\left(r_{\text {out }}^{2}-r_{\text {in }}^{2}\right) d \theta
$$

$$
\begin{aligned}
& r=2 \sin \theta \\
& x=r \cos \theta=2 \sin \theta \cos \theta= \sin 2 \theta \\
& y=r \sin \theta=2 \sin \theta \sin \theta= 2 \sin ^{2} \theta=1-\cos 2 \theta \\
& \sin ^{2} 2 \theta+\cos ^{2} 2 \theta=1 \\
& \cos 2 \theta=1-2 \sin ^{2} \theta \quad x^{2}+(1-y)^{2}=1 \quad \text { circle of }
\end{aligned}
$$

radius 1 centered at $(0,1)$
2) $r=\sec \theta=\frac{1}{\cos \theta}$
3) $r=6 \cos \theta$

4)

$$
\begin{aligned}
x^{2}+y^{2} & =9 \\
r^{2} & =9 \\
r & =\mp 3
\end{aligned}
$$

5)

$$
\begin{aligned}
& r=2 \tan \theta \sec \theta \\
& r=2 \cdot \frac{y}{x} \cdot \frac{1}{\cos \theta} \\
& r \cos \theta=\frac{2 y}{x} \\
& x=\frac{2 y}{x} \quad y=\frac{x^{2}}{2}
\end{aligned}
$$

