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'heorem 6.5: Properties of Vector Line Integrals

[.et F and G be continuous vector fields with domains that include the oriented smooth curve C. Then

. [ F+G)dr= [ Fdr+ [ G-dar
f kF -dr = k / F -dr. where k is a constant
C sl 0

i. [ Fdr==[F-d
o r '/C ar

IV. Suppose instead that C is a piecewise smooth curve in the domains of F and G, where
C=C;+Cr+ - +Cy and C,, C5...., C, are smooth curves such that the endpoint of C; is the

starting pointhof Criogs [hen
F.ds= F-ds + F-ds+ - F-ds.
f as = f S / das fC ds
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E 'f?"r-l 6.19 " Calculate line integral f F-dr. where F is vector field ( y*, 2xy
C

vertices (0. 0). (4. 0). and (0. 5). oriented counterclockwise.




Applications of Line Integrals /Ag\&_j Jm-'f- JS
Calculating the Mass of a Wire M'—"-fcﬂ(-l‘- y, 2)ds.

&7 6.20 Calculate the mass of a spring in the shape of a helix parameterized by

r(r)= (cost.sint.t).0<t <6z witha density function given bv p(x. v. 2) = x + v+ z kg/m.
(1) = ( )+ 0L £ y given by p(x, . X+y+zke

it Jo= [ e It

G[K(mytfsu-é + Q\r?:clﬁ
1

X = OOS&; O: \‘_q_:[gm‘k"a’st 'l':%'}

“(‘0 z g\l\t

.... ¢ 50T
2t :ﬁ[o_ﬁl%ﬂ—--(o—L'O) [8(2 1 Ky

(T
.{7 O

0,




Calculating Work

How much work is required to move an object in vector force field F = ( yz, xy, xz along path

r()= (151, t*), 0<r<1? SeeFigure 6.22. Worv’ rolbe)‘ cl)
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Flux and Circulation

Fluxd salications to calculate fluid flow across a curve

is the unit normal vector to C
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Theorem 6.6: Calculating Flux across a Curve

a<t<b. Let n(t)= ( y'(t),=x'(1))

l‘—\_—'

Definition

The flux of F across C is line integral f F-
e C

Let F be a vector field and let C be a smooth curve with parameterization r(r) = ( x(7). y(t) ) .a <t < b. Let

n(t) = ( y'(tr)., =x'(t) ) . The flux of F across C is




i-%_ﬁl 6.21 Calculate the flux of F = ( x4+ 1y, 2y ) across the line segment from (0, 0) to (2, 3), where the
hd -—'——'-\-..______—_

curve is oriented from left to right.
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The line integral of vector field F along an oriented!dDSEd 9_111”‘«'&‘ is called the circulation of F along C. C bs.eé
Circulation line integrals have their own notation: ﬁ F-Tds.
&
Let F= ( —y.x) be the vector field from Example 6.16 and let C represent the unit circle oriented
counterclockwise. Calculate the circulation of F along C.
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6.3 | Conservative Vector Fields\‘: F ::Vf ‘I’M F IS ConServaive

// Definition
Curve C is a closed curve if there is a parameterization r(7), a <t < b of C such that the parameterization traverses

the curve exactly once and r(a) = r(b). Curve C is a simple curve if C does not cross itself. That is, C is simple

—— ——— e,
if there exists a parameterization r(f). a <t < b of C such that r is one-to-one over (a, b). It is possible for
e ——

r(a) = r(b), meaning that the simple curve is also closed.

F=< P;n>

(a) Simple, not closed (b) Simple, closed (c) Not simple, (d) Not simple,
R —— closed not closed




Lf’ 6.24 Is the curve given by parameterization r(z ( ST, ? sinf ), 0< r <2r a 51mp]e L]C’S@d curve?
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Let C be a piecewise smooth curve with parameterization r(f). a <t < b. Let f be a function of two or three
e —————

variables with first-order partial derivatives that exist and are continuous on C. Then,

J 1 s dr = firb) - fix@).
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jF(x) = f(b)-f(a)

(6.12)
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Definition

Let F be a vector field with domain D. The vector field F is independent of path (or path independent) if

f F-dr = f F -dr for any paths C; and C, in D with the same initial and terminal points.
C & -
1 2
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Theorem 6.8: Path Independence of Cor15er'iiifve Fields /A"I‘(J/olh P
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Problem-Solving Stragegy: Finding a Potential Function for a Conservative Vector Field

F(x, y) = { P(x, y), O(x, y) )

1. Integrate P with respect to x. This results in a function of the form g(x, y) + h(y), where A(y) is unknown.

2. Take the partial derivative of g(x, y) + hA(y) with respect to y, which results in the function gy (x. y) + A" (y).
3. Use the equation g (x, y)+ A’ (y) = Q(x, y) to find A’ (y).
L;\—,/' ’ﬂ

4, Integrate h'(y) to find h(y).
___———--__—-'

5. Any function of the form f(x, y) = g(x, y) + hA(y) + C. where C is a constant, is a potential function for F.
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vative Fields

f ﬁ
. ; . .f-
), then F is conservative.
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Theorem 6.11: Cross-Partial Property of Conservative Fields

Let F= (P.Q.R) be a vector field on anlopen. simply connected regio‘ D. Then Py = Q,. P; =Ry, and

Q; = Ry throughout D if and only if F is conservative.
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