6 VECTOR CALCULUS

Chapter Outline

- 6.1 Vector Fields
- 6.2 Line Integrals 🗸
- 6.3 Conservative Vector Fields 🗸
- 6.4 Green's Theorem
- 6.5 Divergence and Curl
- 6.6 Surface Integrals
- 6.7 Stokes' Theorem
- 6.8 The Divergence Theorem

56. Evaluate
$$\int_{\gamma} (x^2 + y^2 + z^2)^{-1} ds$$
, where γ is the

helix $x = \cos t$, $y = \sin t$, $z = t(0 \le t \le T)$.

$$=\int \frac{1}{1+t^2} \sqrt{2} dt = \arctan t = 0$$

$$t = \arctan t$$
 $t = \arctan t$
 $t = \arctan 0$
 $t = \sqrt{2} \left[\arctan t - \arctan t \right] \arctan t = 0$
 $t = \sqrt{2} \left[\arctan t - \arctan t \right] \arctan t = 0$

$$ds = \sqrt{x'(t)^{2} + y'(t)^{2} + (t'(t))^{2}} dt$$

$$= \sqrt{\sin^{2}t + \cos^{2}t + 1^{2}} dt = \sqrt{2}dt$$

$$6900=0$$
 $arctan0=0$

57. Evaluate $\int_C yzdx + xzdy + xydz$ over the line segment from (1, 1, 1) to (3, 2, 0). $U = \left\langle 3 - 1, 2 - 1, 0 - 1 \right\rangle$ Jirection vector l: <1,1,17+t<2,1,-17 = <1+2+, 1++, 1-+7 dx=2dt X(4)=1+2t y(t)= 4+ dy= dt 07=- 9F Z(1)=1-t from teginning to

JF.dr J(M,N). <dx,dy) J(P, 0, R). (dx, dy, dt) [(HE)(1-E)26+ (1+24)(1-E) dt + (H2+)(11+)(-J+) = [2-2+2++++-2++1-3+-2+]dt - 5(-6t-2t+2) H=-1

$$= \left(-2t^3 - t^2 + 2t\right) \Big|_0^1 = -2 - 1 + 2 = -1$$

$$\int_{\alpha} f(x) dx = -\int_{\alpha} f(x) dx$$

Let **F** and **G** be continuous vector fields with domains that include the oriented smooth curve *C*. Then

i.
$$\int_C (\mathbf{F} + \mathbf{G}) \cdot d\mathbf{r} = \int_C \mathbf{F} \cdot d\mathbf{r} + \int_C \mathbf{G} \cdot d\mathbf{r}$$

ii.
$$\int_C k\mathbf{F} \cdot d\mathbf{r} = k \int_C \mathbf{F} \cdot d\mathbf{r}$$
, where *k* is a constant

iii.
$$\int_{-C} \mathbf{F} \cdot d\mathbf{r} = -\int_{C} \mathbf{F} \cdot d\mathbf{r}$$

iV. Suppose instead that C is a piecewise smooth curve in the domains of \mathbf{F} and \mathbf{G} , where $C = C_1 + C_2 + \cdots + C_n$ and C_1, C_2, \ldots, C_n are smooth curves such that the endpoint of C_i is the starting point of C_{i+1} . Then

$$\int_{C} \mathbf{F} \cdot d\mathbf{s} = \int_{C_{1}} \mathbf{F} \cdot d\mathbf{s} + \int_{C_{2}} \mathbf{F} \cdot d\mathbf{s} + \cdots + \int_{C_{n}} \mathbf{F} \cdot d\mathbf{s}.$$

$$\int_{0}^{b} f(x) dx = \int_{0}^{b} f(x) dx + \int_{0}^{b} f(x) dx$$

Calculate line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where \mathbf{F} is vector field $\langle y^2, 2xy + 1 \rangle$ and C is a triangle with

vertices (0, 0), (4, 0), and (0, 5), oriented counterclockwise.

ented counterclockwise.

$$\frac{4}{5}\langle 0,1\rangle \cdot \langle dt,0\rangle = \int 0 dt = 0 = \int F \cdot dr$$

$$0 \cdot (-\frac{5t}{4} + \frac{5}{7}) \cdot 2t(-\frac{5t}{4} + \frac{5}{7}) + \int (dt, -\frac{5dt}{4}) \cdot 4t = 0$$

$$-\frac{5}{4} \cdot dr = \int (-\frac{5t}{4} + \frac{5}{7}) \cdot \langle 0, dt \rangle = \int dt = t = t = 0$$

$$\int F \cdot dr = \int (-\frac{5t}{4} + \frac{5}{7}) \cdot \langle 0, dt \rangle = \int dt = t = t = 0$$

Applications of Line Integrals

Calculating the Mass of a Wire

$$\mathbf{M} = \int_{C} \rho(x, y, z) ds.$$

6.20 Calculate the mass of a spring in the shape of a helix parameterized by $\mathbf{r}(t) = \langle \cos t, \sin t, t \rangle$, $0 \le t \le 6\pi$, with a density function given by $\rho(x, y, z) = x + y + z$ kg/m.

$$0.0 \le t \le 6\pi, \text{ with a density function given by } \rho(x, y, z) = x + y + z \text{ kg/m.}$$

$$0.0 \le t \le 6\pi, \text{ with a density function given by } \rho(x, y, z) = x + y + z \text{ kg/m.}$$

$$0.0 \le t \le 6\pi, \text{ with a density function given by } \rho(x, y, z) = x + y + z \text{ kg/m.}$$

$$0.0 \le t \le 6\pi, \text{ with a density function given by } \rho(x, y, z) = x + y + z \text{ kg/m.}$$

$$0.0 \le t \le 6\pi, \text{ with a density function given by } \rho(x, y, z) = x + y + z \text{ kg/m.}$$

$$0.0 \le t \le 6\pi, \text{ with a density function given by } \rho(x, y, z) = x + y + z \text{ kg/m.}$$

$$0.0 \le t \le 6\pi, \text{ with a density function given by } \rho(x, y, z) = x + y + z \text{ kg/m.}$$

$$0.0 \le t \le 6\pi, \text{ with a density function given by } \rho(x, y, z) = x + y + z \text{ kg/m.}$$

$$0.0 \le t \le 6\pi, \text{ with a density function given by } \rho(x, y, z) = x + y + z \text{ kg/m.}$$

$$0.0 \le t \le 6\pi, \text{ with a density function given by } \rho(x, y, z) = x + y + z \text{ kg/m.}$$

$$0.0 \le t \le 6\pi, \text{ with a density function given by } \rho(x, y, z) = x + y + z \text{ kg/m.}$$

$$0.0 \le t \le 6\pi, \text{ with a density function given by } \rho(x, y, z) = x + y + z \text{ kg/m.}$$

$$0.0 \le t \le 6\pi, \text{ with a density function given by } \rho(x, y, z) = x + y + z \text{ kg/m.}$$

$$0.0 \le t \le 6\pi, \text{ with a density function given by } \rho(x, y, z) = x + y + z \text{ kg/m.}$$

$$0.0 \le t \le 6\pi, \text{ with a density function given by } \rho(x, y, z) = x + y + z \text{ kg/m.}$$

$$0.0 \le t \le 6\pi, \text{ with a density function given by } \rho(x, y, z) = x + y + z \text{ kg/m.}$$

$$0.0 \le t \le 6\pi, \text{ with a density function given by } \rho(x, y, z) = x + y + z \text{ kg/m.}$$

$$0.0 \le t \le 6\pi, \text{ with a density function given by } \rho(x, y, z) = x + y + z \text{ kg/m.}$$

$$0.0 \le t \le 6\pi, \text{ with a density function given by } \rho(x, y, z) = x + y + z \text{ kg/m.}$$

$$0.0 \le t \le 6\pi, \text{ with a density function given by } \rho(x, y, z) = x + y + z \text{ kg/m.}$$

$$0.0 \le t \le 6\pi, \text{ with a density function given by } \rho(x, y, z) = x + y + z \text{ kg/m.}$$

$$0.0 \le t \le 6\pi, \text{ with a density function given by } \rho(x, y, z) = x + y + z \text{ kg/m.}$$

$$0.0 \le t \le 6\pi, \text{ with a density function given by } \rho(x, y, z) = x + y + z \text{ kg/m.}$$

$$0.0 \le t \le 6\pi, \text{ with a density function gi$$

How much work is required to move an object in vector force field $\mathbf{F} = \langle yz, xy, xz \rangle$ along path

 $\mathbf{r}(t) = \langle t^2, t, t^4 \rangle$, $0 \le t \le 1$? See **Figure 6.22**.

(0,00) to

X=t dx=2tdt y=t dy=dt 1=t4 dt#dt 1 (2th+t3+4t3)dt

Flux and Circulation

Flux is used in applications to calculate fluid flow across a curve

$$\mathbf{r}(t) = \langle x(t), y(t) \rangle$$
 $a \le t \le b$. Let $\mathbf{n}(t) = \langle y'(t), -x'(t) \rangle$

F Nds

$$\mathbf{N}(t) = \frac{\mathbf{n}(t)}{\|\mathbf{n}(t)\|}$$
 is the unit normal vector to C

Definition

The **flux** of **F** across *C* is line integral $\int_C \mathbf{F} \cdot \frac{\mathbf{n}(t)}{\parallel \mathbf{n}(t) \parallel} ds$.

Theorem 6.6: Calculating Flux across a Curve

Let **F** be a vector field and let *C* be a smooth curve with parameterization $\mathbf{r}(t) = \langle x(t), y(t) \rangle$, $a \le t \le b$. Let $\mathbf{n}(t) = \langle y'(t), -x'(t) \rangle$. The flux of **F** across *C* is

$$\int_{C} \mathbf{F} \cdot \mathbf{N} ds = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \mathbf{n}(t) dt$$

(6.11)

 $\frac{n(t)}{(y'4)^2+(x''E)^2}$

6.21 Calculate the flux of $\mathbf{F} = \langle x + y, 2y \rangle$ across the line segment from (0, 0) to (2, 3), where the curve is oriented from left to right.

Curve is oriented from left to

$$\begin{aligned}
I' &= \langle 2, 3 \rangle \\
!! \langle 0, 0 \rangle + t \langle 2, 3 \rangle \\
X &= 2t \\
J &= 3t \\
0 &< t &< 1 \\
r(t) &= \langle 2t, 3t \rangle \\
n(t) &= \langle 3, -2 \rangle
\end{aligned}$$

JF(r(t)) = n(t) dt (2t+3t,6t)-(3,-2) dt The line integral of vector field **F** along an oriented closed cluve is called the **circulation** of **F** along *C*.

Circulation line integrals have their own notation: ϕ **F** · **T**ds.

Let $\mathbf{F} = \langle -y, x \rangle$ be the vector field from **Example 6.16** and let C represent the unit circle oriented counterclockwise. Calculate the circulation of \mathbf{F} along C.

6.3 | Conservative Vector Fields $F = \nabla f$ than F is conservative

Definition

Curve *C* is a **closed curve** if there is a parameterization $\mathbf{r}(t)$, $a \le t \le b$ of *C* such that the parameterization traverses the curve exactly once and $\mathbf{r}(a) = \mathbf{r}(b)$. Curve *C* is a **simple curve** if *C* does not cross itself. That is, *C* is simple if there exists a parameterization $\mathbf{r}(t)$, $a \le t \le b$ of *C* such that \mathbf{r} is one-to-one over (a, b). It is possible for $\mathbf{r}(a) = \mathbf{r}(b)$, meaning that the simple curve is also closed.

(a) Simple, not closed

(b) Simple, closed

(c) Not simple, closed

(d) Not simple, not closed

< Slide 16 → >

x=2cost y-3sint

$$(\frac{x}{2})^{2} + (\frac{y}{3})^{2} = 1$$

YES, it 15 simple and closed.

$$\Gamma(0) = (2,0)$$

 $\Gamma(317) = (-2,0)$

Let *C* be a piecewise smooth curve with parameterization $\mathbf{r}(t)$, $a \le t \le b$. Let *f* be a function of two or three variables with first-order partial derivatives that exist and are continuous on *C*. Then,

> (6.12) $\int_{C} \nabla f \bullet d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a)).$

observe that RHS (right hand side) is independent of path.

F(x) dx = f(b) - f(a)

$$t=0$$

 $\mathbf{F} = \langle 2xy - 2y + (y+1)^2, (x-1)^2 + 2yx + 2x \rangle$, calculate integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the lower half

of the unit circle oriented counterclockwise.

that

Definition

Let **F** be a vector field with domain *D*. The vector field **F** is **independent of path** (or **path independent**) if $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$ for any paths C_1 and C_2 in *D* with the same initial and terminal points.

Theorem 6.8: Path Independence of Conservative Fields

If **F** is a conservative vector field, then **F** is independent of path.

$$P_{y} = Q_{x}$$

$$\int_{C} F. dr = \int_{C} F. dr = f(r(y)) - f(r(a))$$

$$f = yx + h(y)$$

$$(y) - f(r(a)) + fy = x + h'(y) = 0$$

$$h'(y) = 0$$

$$f(xy) = yx + 0$$

Problem-Solving Stragegy: Finding a Potential Function for a Conservative Vector Field $\mathbf{F}(x, y) = \langle P(x, y), Q(x, y) \rangle$

- 1. Integrate *P* with respect to *x*. This results in a function of the form g(x, y) + h(y), where h(y) is unknown.
- 2. Take the partial derivative of g(x, y) + h(y) with respect to y, which results in the function $g_y(x, y) + h'(y)$.
- 3. Use the equation $g_y(x, y) + h'(y) = Q(x, y)$ to find h'(y).
- 4. Integrate h'(y) to find h(y).
- 5. Any function of the form f(x, y) = g(x, y) + h(y) + C, where *C* is a constant, is a potential function for **F**.

Find a potential function for $\mathbf{F}(x, y) = \langle e^x y^3 + y, 3e^x y^2 + x \rangle$.

integrate with respect to x

 $e^{x}y^{3}+xy+h(y)$

diff. with respect to y

3exy+x+h'(y)=Q

h(y)=0

f(xy) = exy3+xy+c

Test: Py=Qx?

then F is conservative there is a portential

finction f.

Theorem 6.10: The Cross-Partial Test for Conservative Fields

If $\mathbf{F} = \langle P, Q, R \rangle$ is a vector field on an open, simply connected region D and $P_y = Q_x$, $P_z = R_x$, and $Q_z = R_y$ throughout *D*, then **F** is conservative.

Theorem 6.11: Cross-Partial Property of Conservative Fields

Let $\mathbf{F} = \langle P, Q, R \rangle$ be a vector field on an open, simply connected region D. Then $P_y = Q_x$, $P_z = R_x$, and $Q_z = R_v$ throughout *D* if and only if **F** is conservative.

