1. Evaluate the integral
$$\int \int_{\mathcal{D}} (x^2 - 2y + xy) dA$$
 where $\mathcal{D} = [-1, 1] \times [0, 2]$.

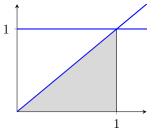
2. Evaluate the integral $\int \int_{\mathcal{R}} (2xy + e^x) dA$ where $\mathcal{R} = [0, 1] \times [0, 1]$.

3. Evaluate the integral $\int \int_{\mathcal{D}} \left(2x^2y^{-2} + 2y \right) dA$ where $\mathcal{D} = \{(x, y) | 1 \le x \le 2, 1 \le y \le x \}$.

4. Evaluate the integral $\int \int_{\mathcal{D}} (1 + \cos x) \, dA$ where $\mathcal{D} = \{(x, y) \mid 0 \le x \le \pi, \ 0 \le y \le \sin x\}$.

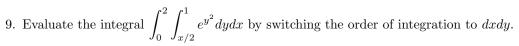
5. Find the volume between the surface z = x + xy and $\mathcal{D} = [0, 2] \times [0, 1]$ on xy-plane.

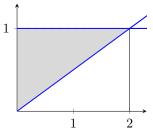
6. Find the volume between the surface $z = e^{-x^2}$ and \mathcal{D} on xy-plane, where \mathcal{D} is as shown below:



7. Evaluate the integral $\int \int_{\mathcal{D}} (x+y) dA$ where \mathcal{D} is the region between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 9$.

8. Evaluate the integral $\int \int_{\mathcal{D}} \frac{1}{x^2 + y^2} dA$ where \mathcal{D} is the region between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = e^2$.

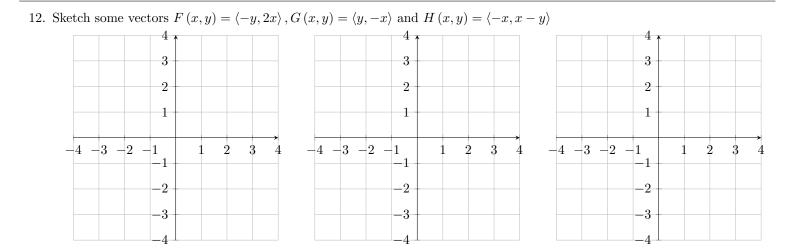




10. Evaluate $\int \int_{\mathcal{D}} x dy dx$ where \mathcal{D} is as below;

 $y = x^2$

11. Determine whether the vector field $F(x,y) = \langle \cos x - 2xy, e^y - x^2 \rangle$ is conservative. Find a potential function if it is conservative.



13. Use Green's theorem to evaluate $\int_{\mathcal{C}} \vec{F} \cdot d\vec{r}$ where $\vec{F}(x,y) = \langle y^3, x^3 + 3x^2y \rangle$ and \mathcal{C} is the circle $x^2 + y^2 = 4$, oriented counter clockwise.

14. Use Green's theorem to evaluate $\int_{\mathcal{C}} \vec{F} \cdot d\vec{r}$ where $\vec{F}(x,y) = \langle \arctan x + y^2, e^y - x^2 \rangle$ and \mathcal{C} is the unit circle $x^2 + y^2 = 1$, oriented clockwise.

15. Find the work done by the force field $\vec{F}(x, y, z) = 3x^2 i + (2xz - y) j + zk$ to move a particle along the straight line from (0, 0, 0) to (2, 1, 3).

16. Find the work done by the force field $\vec{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} + 3\mathbf{k}$ on a particle that moves along the helix $r(t) = \langle \cos t, \sin t, t \rangle$ from t = 0 to $t = 2\pi$.