Lines and planes in space
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Theorem 2.11: Parametric and Symmetric Equations of a Line

A line L parallel to vector v= (a, b, ¢) and passing through point P(x(, yg, zg) can be described by the

following parametric equations:

xX=xp+ta,y=yy+1th, andz =z, +fc. (2.13)

If the constants a, b, and ¢ are all nonzero, then L can be described by the symmetric equation of the line:

X—=Xg Y=Y _Z—2 (2.14)
a ~ p ~Cc



2.43 _Fjld parametric and symmetric equations of the line passing through points (1, —=3. 2) and (3, =2, 8).
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Distance between a Point and a Line
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_ parallelogram with base || v || and height d, which is the
Figure 2.64 The distance from point M to line L is the

length of MP.

distance between a line and a point in space.

Theorem 2.12: Distance from a Point to a Line

Let L be a line in space passing through point P with direction vector v. If M is any point not on L, then the
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distance from M to L is ————
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@ 2.45 Find the distance between point#N0, 3, 6) and the line with parametric equations
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@ 2.46 Describe the relationship between the lines with the following parametric equations:
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Equations for a Plane
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Figure 2.69 Given a point P and vector n, the set of all
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points O with PQ orthogonal to n forms a plane.



Definition

—
Given a point P and vector n, the set of all points Q satisfying the equation n- PQ = (0 forms a plane. The

equation
n'}?Q — 0 (2.17)
is known as the vector equation of a plane.
The scalar equation of a plane containing point P = (x, yq, ZQ) with normal vector n = {a, b, ¢ ) is
R e i e ﬂ (2.18)

This equation can be expressed asEx + by+cz+ i = (lf where d = —axy — by, — czy. This form of the equation

is sometimes called the general form of the equation of a plane.
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2.47 Find an equation of the plane containing the lines L; and L,:
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Theorem 2.13: The Distance between a Plane and a Point

Suppose a plane with normal vector n passes through point Q. The distance d from the plane to a point P not in

the plane is given by
‘Q_}J On‘ (2.19)
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Figure 2.70 We want to find the shortest distance from point
P to the plane. Let point R be the point in the plane such that,
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for any other point in the plane Q, || RP || < || QP || .
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Parallel and Intersecting Planes

@ 2.49 Find parametric equations for the
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