Lines and planes in space

$$
\text { in }^{2} \underset{y=2 x+1}{x}(x, y) \quad \overrightarrow{P Q}=\langle 1,2\rangle
$$

any point on the line can be written as

$$
\begin{aligned}
& \langle x, y\rangle
\end{aligned} \begin{aligned}
&\langle\vec{P}+t \overrightarrow{P Q}=\vec{X} \text { vector form } \\
&=\langle 1,3\rangle+t\langle 1,2\rangle=\langle 1+t, 3+2 t\rangle
\end{aligned}
$$

$x=1+t$ parametric form

$$
y=3+2 t
$$

$$
t=-1,(0,1)
$$

$$
t=x-1=\frac{y-3}{2}
$$

$$
t=0 \quad(1,3)
$$

symmetric form.

$$
t=1 \quad(2,5)
$$

$$
\overrightarrow{\overrightarrow{P Q}=} \begin{aligned}
\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle & =\langle t a, t b, t c\rangle \\
\langle x, y, z\rangle-\left\langle x_{0}, y_{0}, z_{0}\right\rangle & =t\langle a, b, c\rangle \\
\langle x, y, z\rangle & =\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle .
\end{aligned}
$$

Setting $\mathbf{r}=\langle x, y, z\rangle$ and $\mathbf{r}_{0}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, we now have the vector equation of a line:

Figure 2.63 Vector \mathbf{v} is the direction vector for $\overrightarrow{P Q}$.
$y=n+m x$
slope
is replaced by direction vector.
$r=r_{0}+t v$ vector form

$$
\begin{aligned}
\langle x, y, z\rangle & =\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle \\
& =\left\langle x_{0}+a t, y_{0}+b t, z_{0}+c t\right\rangle
\end{aligned}
$$

$\left.x=x_{0}+a t\right\}$ parametric
$\left.\begin{array}{l}y=y_{0}+b t \\ z=z_{0}+c t\end{array}\right\}$ form

$$
t=\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

symmetric form

Theorem 2.11: Parametric and Symmetric Equations of a Line

A line L parallel to vector $\mathbf{v}=\langle a, b, c\rangle$ and passing through point $P\left(x_{0}, y_{0}, z_{0}\right)$ can be described by the following parametric equations:

$$
\begin{equation*}
x=x_{0}+t a, y=y_{0}+t b, \text { and } z=z_{0}+t c . \tag{2.13}
\end{equation*}
$$

If the constants a, b, and c are all nonzero, then L can be described by the symmetric equation of the line:

$$
\begin{equation*}
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c} \tag{2.14}
\end{equation*}
$$

2.43 Find parametric and symmetric equations of the line passing through points $\boldsymbol{A}(1,-3,2)$ and $(5,-2,8)$. $V=\overrightarrow{A B}=\vec{B}-\vec{A}=\langle 5-1,-2-(-3), 8-2\rangle=\langle 4,1,6\rangle^{\text {a }}$ direction vector $\langle x, y, z\rangle=\langle 1,-3,2\rangle+t\langle 4,1,6\rangle$ vector form $=\langle 1+4 t,-3+t, 2+6 t\rangle$
$x=1+4 t\}$ parametric
$y=-3+t \quad$ equations.

$$
t=\frac{x-1}{4}=\frac{y+3}{1}=\frac{z-2}{6}
$$

symmetric equations.
2.44 Find parametric equations of the line segment between points $P(-1,3,6)$ and $Q(-8,2,4)$.

$$
V=\overrightarrow{P Q}=\langle-7,-1,-2\rangle \quad \text { OR } \quad y=\overrightarrow{Q P}=\langle 7,1,2\rangle
$$

$$
\langle x, y, z\rangle=\langle-1,3,6\rangle+\frac{t}{z}\langle 7,1,2\rangle \text { line }
$$

$x=-1+7 t$,
$y=3+t$,
$z=6+2 t$,
$-1 \leqslant t \leqslant 0$
$t=0$ is p
$t=-t$ is Q

$t=0$

$$
\begin{array}{rlr}
\vec{P}+t \overrightarrow{P Q}, & 0 \leqslant t \leqslant 1 \\
\langle 1,3,6\rangle+t\langle-7,-1,-2\rangle & & \\
t=0 \text { is } P \\
x & =-1-7 t & t=1 \text { is } Q \\
y & =3-t \quad 0 \leqslant t \leqslant 1 & \\
z & =6-2 t &
\end{array}
$$

Distance between a Point and a Line

Figure 2.64 The distance from point M to line L is the length of $\overline{M P}$.

Figure 2.65 Vectors $\overrightarrow{P M}$ and \mathbf{v} form two sides of a parallelogram with base $\|\mathbf{v}\|$ and height d, which is the distance between a line and a point in space.

Theorem 2.12: Distance from a Point to a Line

Let L be a line in space passing through point \underline{P} with direction vector \mathbf{v}. If M is any point not on L, then the distance from M to L is

E2.45 Find the distance between point $\boldsymbol{\mathcal { }}(0,3,6)$ and the line with parametric equations $x=1-t, y=1+2 t, z=5+3 t$. direction vector

$$
\begin{aligned}
& V=\langle-1,2,3\rangle \\
& \overrightarrow{P M}=\langle-1,2,1\rangle \\
& \overrightarrow{P M} \times \vec{V}=\left|\begin{array}{ccc}
i & j & k \\
-1 & 2 & 1 \\
-1 & 2 & 3
\end{array}\right|=i\left|\begin{array}{ll}
2 & 1 \\
2 & 3
\end{array}\right|-j\left|\begin{array}{cc}
-1 & 1 \\
-1 & 3
\end{array}\right|+k\left|\begin{array}{cc}
-1 & 2 \\
-1 & 2
\end{array}\right|=4 i+2 j+0 k \\
& d=\frac{\|\overrightarrow{P M} \times V\|}{\|V\|}=\frac{\sqrt{4^{2}+2^{2}}}{\sqrt{1^{2}+2^{2}+3^{2}}}=\frac{\sqrt{20}}{\sqrt{14}}=\sqrt{\frac{10}{7}}=\frac{\sqrt{70}}{7} \text { unit }
\end{aligned}
$$

2.46 Describe the relationship between the lines with the following parametric equations: try
Common solution

$$
\begin{array}{ll}
x=1-4 t, y=3+t, z=8-6 t & v_{4}=\langle-4,4,-6\rangle \\
x=2+3 s, y=2 s, z=-1-3 s . & v_{2}=\langle 3,2,-3\rangle
\end{array}
$$

$$
\begin{aligned}
1-4 t=2+3 s \\
3+t=2 s
\end{aligned}+\begin{aligned}
1-4 t & =2+3 s \\
+12+4 t & =8 s \\
13 & =2+11 s \\
1-6 t & =-1-3 s \\
3+t & =2 \\
t & =-1
\end{aligned}
$$

$$
(5,2,14)
$$

$$
(5,2,-4)
$$

$$
8-6(-1)=-1-3 x 1
$$

$14=-4$ the do not intersect the lines are skew to each other,

Equations for a Plane

$$
\langle a, b, c\rangle \bullet\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=0
$$

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

 points Q with $\overrightarrow{P Q}$ orthogonal to \mathbf{n} forms a plane.

Definition

Given a point P and vector \mathbf{n}, the set of all points Q satisfying the equation $\mathbf{n} \cdot \overrightarrow{P Q}=0$ forms a plane. The equation

$$
\begin{equation*}
\mathbf{n} \bullet \overrightarrow{P Q}=0 \tag{2.17}
\end{equation*}
$$

is known as the vector equation of a plane.
The scalar equation of a plane containing point $P=\left(x_{0}, y_{0}, z_{0}\right)$ with normal vector $\mathbf{n}=\langle a, b, c\rangle$ is

$$
\begin{equation*}
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0 . \tag{2.18}
\end{equation*}
$$

This equation can be expressed as $a x+b y+c z+d=0$, where $d=-a x_{0}-b y_{0}-c z_{0}$. This form of the equation is sometimes called the general form of the equation of a plane.

$$
\begin{aligned}
& a x+b y+c z+d=0 \\
& \checkmark \downarrow \downarrow \\
n= & \langle a, b, c\rangle \text { normal vector }
\end{aligned}
$$

Find the general equation of the plane passing $\vec{n}=\overrightarrow{P R} \times \overrightarrow{P Q}=\langle-2,-3,-2\rangle \times\langle 1,3,2\rangle$ through P, Q, and R.

$$
\begin{aligned}
& \text { z. } \left.{ }^{-2,-1)} n=\begin{array}{ccc}
i & j & k \\
-2 & -3 & -2 \\
1 & 3 & 2
\end{array} \right\rvert\,=i(-6+6)-j(-4+2)+k(-6+3) \\
& \vec{n} \cdot \overrightarrow{p x}=0 \\
& \langle 0,2,-3\rangle \cdot\langle x-1, y-1, z-1\rangle=0 \\
& 0(x-1)+2(y-1)-3(z-1)=0 \\
& 2 y-3 z+1=0
\end{aligned}
$$

$$
\begin{aligned}
2-3+d & =0 \\
d & =1
\end{aligned}
$$

2.47 Find an equation of the plane containing the lines L_{1} and L_{2} :

$$
n=V_{l} \times V_{n}
$$

$$
L_{1}: x=-y=z=t \quad V_{1}=\langle 1,-1,1\rangle
$$ vectors.

$$
\begin{aligned}
n=\left|\begin{array}{ccc}
i & j & k \\
1 & -1 & 1 \\
2 & 1 & 1
\end{array}\right|= & =-2(-i-1)-j(1-2)+k(1-(-2)) \\
& =-j+3 k=\langle-2,1,3\rangle
\end{aligned}
$$

$$
-2 x+y+3 z+d=0
$$

$t=0,(0,0,0)$ is on L_{1} therefore on the plane

$$
d=0
$$

$$
-2 x+y+3 z=0 \quad(3,0,2) \text { is on } L_{2}
$$

satisfies the equation.

Theorem 2.13: The Distance between a Plane and a Point
Suppose a plane with normal vector \mathbf{n} passes through point Q. The distance d from the plane to a point P not in the plane is given by

$$
\begin{equation*}
d=\left\|\operatorname{proj}_{\mathbf{n}} \overrightarrow{Q P}\right\|=\left|\operatorname{comp}_{\mathbf{n}} \overrightarrow{Q P}\right|=\frac{|\overrightarrow{Q P} \circ \mathbf{n}|}{\|\mathbf{n}\|} \tag{2.19}
\end{equation*}
$$

Q is any point on the plane

Figure 2.70 We want to find the shortest distance from point P to the plane. Let point R be the point in the plane such that, for any other point in the plane $Q,\|\overrightarrow{R P}\|<\|\overrightarrow{Q P}\|$.
we meed a point Q on the plane.

$$
\text { Let's say } x=0, y=2,4 \times 0+2 \times 2-z=3, z=1
$$

$$
\begin{aligned}
& d=\frac{\|\overrightarrow{Q P} \cdot \vec{n}\|}{\|n\|}=\frac{\|\langle 5,-3,-1\rangle \cdot\langle 4,2,-1\rangle\|}{\sqrt{4^{2}+2^{2}+1^{2}}}=\frac{15}{\sqrt{21}}=\frac{5 \sqrt{21}}{7}
\end{aligned}
$$

Parallel and Intersecting Planes

$$
n_{1}=\langle 1,1,-1\rangle
$$

2.49 Find parametric equations for the line formed by the intersection of planes $x+y-z=3$ and $3 x-y+3 z=5$.
lets say $z=0$
$y=0$
$x+y=3$

$$
\operatorname{line}+\frac{3}{4}
$$

$3 x-y=5$
$4 x=8$

$$
x=2
$$

$$
y=1
$$

$(2,2,0)$ is a point on the line of intersection

$$
\begin{gathered}
\text { 3) } x-z=3 \\
\begin{array}{l}
+3 x+3 z=5
\end{array} \quad v=\left|\begin{array}{ccc}
i & j & k \\
1 & 1 & -1 \\
3 & -1 & 3
\end{array}\right|=2 i-6 j-4 k \\
x=\frac{7}{3} \quad\langle 2,10\rangle+t\langle 1,-3,-2\rangle \\
\left.\begin{array}{l}
x=2+t \\
y=1-3 t \\
z=
\end{array}\right]-2 t
\end{gathered}
$$

