1. Find $|\vec{u}+\vec{v}|$ if $\vec{u}=\langle 2,-1,1\rangle$ and $\vec{v}=\langle-1,3,13\rangle$.
2. Determine whether the vectors $\vec{u}=\langle 1,2,2\rangle$, $\vec{v}=\langle\sqrt{2}, 1,-1\rangle$ are orthogonal, parallel or neither. If neither, also find the angle between two vectors.
3. Find $\cos \widehat{A B C}$ if $A(1,4), B(2,2)$ and $C(3,5)$.

Find the measure of the angle $\widehat{A B C}$.
4. Find $\cos \widehat{B C A}$ if $A(1,4), B(2,2)$ and $C(3,5)$.

Find the measure of the angle $\widehat{A B C}$.
5. Find the vector projection $\operatorname{proj}_{\vec{v}} \vec{u}$ if $\vec{u}=\langle 2,-1\rangle$ and $\vec{v}=\langle 1,3\rangle$.
6. Find the vector projection $\operatorname{proj}_{\vec{v}} \vec{u}$ if $\vec{u}=\langle 0,1,2\rangle$ and $\vec{v}=\langle 1,1, \sqrt{2}\rangle$.
7. Find $|\vec{u} \times \vec{v}|$ if $|\vec{u}|=5,|\vec{v}|=6$, and the angle between $\vec{u}$ and $\vec{v}$ is $30^{\circ}$.
8. Find symmetric equations of the line through the point $P_{0}(-2,1,3)$ and parallel to the line $x=2+t, y=-1+5 t, z=4 t$.
9. Find a vector equation of the line trhough the points $A(2,4,3)$ and $B(1,2,-1)$. Also give parametric equations for the line. Where does the line intersect $x z$-plane?
10. Determine whether the planes $2 x+y-z=1$ and $x+y+3 z=2$ are parallel, perpendicular or neither. If neither, also find the angle between two planes.
11. Determine whether the planes $\sqrt{2} x+y+z=1$ and $\sqrt{2} x-y+z=5$ are parallel, perpendicular or neither. If neither, also find the angle between two planes.
12. Find the distance from the point $P(4,5,6)$ to the plane $2 x-y+z=6$.
13. Let $\mathcal{P}$ be the plane containing the point $(2,1,1)$ and perpendicular to $x$-axis. Which of the following sets of equations describes the intersection of the plane $\mathcal{P}$ with the sphere of radius 3 centered at the origin?
14. Let $\mathcal{P}$ be the plane with equation $x+2 y+z=10$ and $l$ be the line through the points $A(1,0,-1)$ and $B(2,1,1)$. Find the point of intersection if they intersect.
15. By using triple product, find the volume of the parallelepiped determined by the vectors $\vec{u}=\langle 0,2,1\rangle$, $\vec{v}=\langle-1,3,0\rangle$ and $\vec{w}=\langle 2,1,-1\rangle$.
16. Find an equation of the plane containing the given triangle.

17. Calculate the dot product $(\vec{u}+\vec{v}) \cdot(\vec{u}-\vec{v})$ if $\vec{u}=\boldsymbol{i}+\mathbf{3} \boldsymbol{j}+\boldsymbol{k}$ and $\vec{v}=5 \boldsymbol{i}-\boldsymbol{j}-2 \boldsymbol{k}$. Is the angle between the vectors $\vec{u}+\vec{v}$ and $\vec{u}-\vec{v}$ obtuse or acute? Find the angle between $\vec{u}$ and $\vec{v}$.
18. Calculate the cross product $(\vec{u}+2 \vec{v}) \times(2 \vec{u}-\vec{v})$ if $\vec{u}=\boldsymbol{j}+2 \boldsymbol{k}$ and $\vec{v}=2 \boldsymbol{i}-\boldsymbol{j}+\boldsymbol{k}$.
19. Find the limit $\lim _{t \rightarrow 2}\left\langle t^{2}, \frac{\sin (t-2)}{t^{2}-4}, e^{t}\right\rangle$.
20. For the vector function $\vec{r}(t)=\left\langle t^{2}, \cos t, e^{2 t}\right\rangle$ find the second order derivative when $t=0$. In other words, $\vec{r}^{\prime \prime}(0)=$ ?
21. Find the rate of change for vector function $\vec{r}(t)=\langle\sin t, \cos t, \tan t\rangle$ when $t=\pi / 6$.
22. Determine whether the vector-valued function $\vec{r}(t)=\left\langle\frac{1}{t+2}, \ln (t-2), t^{2}\right\rangle$ is continuous or not at $t=2$.
23. Find the vector function $\vec{r}(t)$ if $\vec{r}^{\prime}(t)=\left\langle 2 t, \cos t, e^{t}\right\rangle$ and $\vec{r}(0)=\langle 1,2,3\rangle$.
24. Evaluate the integral $\int_{0}^{1}\left(t \boldsymbol{i}+\frac{2 t}{1+t^{2}} \boldsymbol{j}+e^{t} \boldsymbol{k}\right) d t$.
25. The velocity of an object is given by $\vec{v}(t)=\left\langle 2 t, \sin t, \frac{1}{t+1}\right\rangle$ and $\vec{v}(0)=\langle 1,1,1\rangle$. Find the position function $\vec{r}(t)$.
26. Find the length of the curve $\vec{r}(t)=\langle\sqrt{5} t, \cos 2 t,-\sin 2 t\rangle$ from $t=0$ to $t=2 \pi$.
27. Find the unit tangent vector $\vec{T}(t)$ to the curve $\vec{r}(t)=\langle t, \cos t, \sin t\rangle$ at $t=\pi / 3$.
28. Find the curvature of the function $\vec{r}(t)=\left\langle t, t^{2}, 0\right\rangle$ at $t=1$.

