\Re eview Questions -1

- 1. Find $|\vec{u} + \vec{v}|$ if $\vec{u} = \langle 2, -1, 1 \rangle$ and $\vec{v} = \langle -1, 3, 13 \rangle$.
- 2. Determine whether the vectors $\vec{u} = \langle 1, 2, 2 \rangle$, $\vec{v} = \langle \sqrt{2}, 1, -1 \rangle$ are orthogonal, parallel or neither. If neither, also find the angle between two vectors.
- 3. Find $\cos \widehat{ABC}$ if A(1,4), B(2,2) and C(3,5). Find the measure of the angle \widehat{ABC} .
- 4. Find $\cos \widehat{BCA}$ if A(1,4), B(2,2) and C(3,5). Find the measure of the angle \widehat{ABC} .
- 5. Find the vector projection $proj_{\vec{v}}\vec{u}$ if $\vec{u} = \langle 2, -1 \rangle$ and $\vec{v} = \langle 1, 3 \rangle$.
- 6. Find the vector projection $proj_{\vec{v}}\vec{u}$ if $\vec{u} = \langle 0, 1, 2 \rangle$ and $\vec{v} = \langle 1, 1, \sqrt{2} \rangle$.
- 7. Find $|\vec{u} \times \vec{v}|$ if $|\vec{u}| = 5, |\vec{v}| = 6$, and the angle between \vec{u} and \vec{v} is 30°.
- 8. Find symmetric equations of the line through the point $P_0(-2, 1, 3)$ and parallel to the line $x = 2 + t, \ y = -1 + 5t, \ z = 4t.$
- 9. Find a vector equation of the line trhough the points A(2,4,3) and B(1,2,-1). Also give parametric equations for the line. Where does the line intersect xz-plane?
- 10. Determine whether the planes 2x + y z = 1 and x + y + 3z = 2 are parallel, perpendicular or neither. If neither, also find the angle between two planes.
- 11. Determine whether the planes $\sqrt{2}x + y + z = 1$ and $\sqrt{2}x y + z = 5$ are parallel, perpendicular or neither. If neither, also find the angle between two planes.
- 12. Find the distance from the point P(4,5,6) to the plane 2x y + z = 6.
- 13. Let \mathcal{P} be the plane containing the point (2, 1, 1) and perpendicular to x-axis. Which of the following sets of equations describes the intersection of the plane \mathcal{P} with the sphere of radius 3 centered at the origin?
- 14. Let \mathcal{P} be the plane with equation x + 2y + z = 10 and l be the line through the points A(1, 0, -1) and B(2, 1, 1). Find the point of intersection if they intersect.
- 15. By using triple product, find the volume of the parallelepiped determined by the vectors $\vec{u} = \langle 0, 2, 1 \rangle$, $\vec{v} = \langle -1, 3, 0 \rangle$ and $\vec{w} = \langle 2, 1, -1 \rangle$.

16. Find an equation of the plane containing the given triangle.

- 17. Calculate the dot product $(\vec{u} + \vec{v}) \cdot (\vec{u} \vec{v})$ if $\vec{u} = i + 3j + k$ and $\vec{v} = 5i - j - 2k$. Is the angle between the vectors $\vec{u} + \vec{v}$ and $\vec{u} - \vec{v}$ obtuse or acute? Find the angle between \vec{u} and \vec{v} .
- 18. Calculate the cross product $(\vec{u} + 2\vec{v}) \times (2\vec{u} \vec{v})$ if $\vec{u} = j + 2k$ and $\vec{v} = 2i - j + k$.
- 19. Find the limit $\lim_{t \to 2} \left\langle t^2, \frac{\sin(t-2)}{t^2-4}, e^t \right\rangle$.
- 20. For the vector function $\vec{r}(t) = \langle t^2, \cos t, e^{2t} \rangle$ find the second order derivative when t = 0. In other words, $\vec{r}''(0) = ?$
- 21. Find the rate of change for vector function $\vec{r}(t) = \langle \sin t, \cos t, \tan t \rangle$ when $t = \pi/6$.
- 22. Determine whether the vector-valued function $\vec{r}(t) = \left\langle \frac{1}{t+2}, \ln(t-2), t^2 \right\rangle$ is continuous or not at t = 2.
- 23. Find the vector function $\vec{r}(t)$ if $\vec{r}'(t) = \langle 2t, \cos t, e^t \rangle$ and $\vec{r}(0) = \langle 1, 2, 3 \rangle$.
- 24. Evaluate the integral $\int_0^1 \left(t \boldsymbol{i} + \frac{2t}{1+t^2} \, \boldsymbol{j} + e^t \boldsymbol{k} \right) dt.$
- 25. The velocity of an object is given by $\vec{v}(t) = \left\langle 2t, \sin t, \frac{1}{t+1} \right\rangle$ and $\vec{v}(0) = \langle 1, 1, 1 \rangle$. Find the position function $\vec{r}(t)$.
- 26. Find the length of the curve $\vec{r}(t) = \langle \sqrt{5}t, \cos 2t, -\sin 2t \rangle$ from t = 0 to $t = 2\pi$.
- 27. Find the unit tangent vector $\vec{T}(t)$ to the curve $\vec{r}(t) = \langle t, \cos t, \sin t \rangle$ at $t = \pi/3$.
- 28. Find the curvature of the function $\vec{r}(t) = \langle t, t^2, 0 \rangle$ at t = 1.