Vectors dot product, cross product

109. The points A, B, and C are collinear (in this order) if the relation $\|\overrightarrow{A B}\|+\|\overrightarrow{B C}\|=\|\overrightarrow{A C}\| \quad$ is
 satisfied. Show that $A(5,3,-1), \quad B(-5,-3,1)$, and $C(-15,-9,3)$ are collinear points.

$$
\begin{aligned}
& \overrightarrow{A B}=\vec{B}-\vec{A}=\langle-10,-6,2\rangle \\
& \overrightarrow{B C}=\vec{C}-\vec{B}=\langle-10,-6,2\rangle \\
& \overrightarrow{A C}=\vec{C}-\vec{A}=\langle-20,-12,4\rangle=2 \overrightarrow{A B}
\end{aligned}
$$

$$
\|\overrightarrow{A B}\|=\sqrt{140}=2 \sqrt{35}=\|\overrightarrow{B C}\|
$$

$$
\|\overrightarrow{A C}\|=\sqrt{400+144+16}=\sqrt{560}
$$

110. Show that points $A(1,0,1), \quad B(0,1,1)$, and
$C(1,1,1)$ are not collinear.

$$
\begin{aligned}
& \overrightarrow{A B}=\langle-1,1,0\rangle \\
& \overrightarrow{B C}=\langle 1,0,0\rangle=i \\
& \overrightarrow{A C}=\langle 0,1,0\rangle=j
\end{aligned}
$$

$$
\|\overrightarrow{A B}\|+\|\overrightarrow{B C}\|=\sqrt{2}+1 \quad \neq\|\overrightarrow{A C}\|=1
$$

so they are not on the same lur.

Definition
The dot product of vectors $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ is given by the sum of the products of the components
similarly on plane

$$
\begin{equation*}
\mathbf{u} \bullet \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3} \tag{2.3}
\end{equation*}
$$

$$
u \cdot v=u_{1} v_{1}+u_{2} v_{2}
$$

2.21 Find $\mathbf{u} \cdot \mathbf{v}$, where $\mathbf{u}=\langle 2,9,-1\rangle$ and $\mathbf{v}=\langle-3,1,-4\rangle$.

$$
u \cdot v=2(-3)+9+(-1)(-4)=7
$$

Theorem 2.3: Properties of the Dot Product
Let $\mathbf{u}, \quad \mathbf{v}$, and \mathbf{w} be vectors, and let c be a scalar.
i.
ii.

$$
\overbrace{\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})}^{\mathbf{u} \bullet \mathbf{v}}=\mathbf{v} \cdot \mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}
$$

iii.

$$
c(\mathbf{u} \cdot \mathbf{v})=(c \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(c \mathbf{v})
$$

iv.

Commutative property
Distributive property
Associative property
Property of magnitude
2.22 Find the following products for $\mathbf{p}=\langle 7,0,2\rangle, \mathbf{q}=\langle-2,2,-2\rangle$, and $\mathbf{r}=\langle 0,2,-3\rangle$.
a. $(\mathbf{r} \cdot \mathbf{p}) \mathbf{q}=(0.7+20+(-3) 2) q=-6\langle-2,2,-2\rangle=\langle 12,-12,12\rangle$
b. $\|\mathbf{p}\|^{2}$

$$
=p \cdot p=7^{2}+2^{2}=53
$$

Figure 2.44 Let θ be the angle between two nonzero vectors \mathbf{u}

$$
\begin{gathered}
\mathbf{u}=\mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta \\
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}
\end{gathered}
$$ and \mathbf{v} such that $0 \leq \theta \leq \pi$.

2.23 Find the measure of the angle, in radians, formed by vectors $\mathbf{a}=\langle 1,2,0\rangle$ and $\mathbf{b}=\langle 2,4,1\rangle$. Round to the nearest hundredth.

$$
\begin{aligned}
\frac{a \cdot b}{\|a\|\|b\|}=\frac{1.2+2.4+0.1}{\sqrt{1^{2}+2^{2}} \sqrt{2^{2}+4^{2}+1^{2}}} & =\frac{10}{\sqrt{5} \sqrt{21}}=\frac{2 \sqrt{105}}{21}=\cos \theta \\
\theta & =\cos ^{-1}\left(\frac{2}{21} \sqrt{105}\right)=12.6^{\circ} \approx
\end{aligned}
$$

Theorem 2.5: Orthogonal Vectors
The nonzero vectors \mathbf{u} and \mathbf{v} are orthogonal vectors if and only if $\mathbf{u} \cdot \mathbf{v}=0$.

$$
\cos \theta=0, \theta=\frac{\pi}{2}
$$

2.24 For which value of x is $\mathbf{p}=\langle 2,8,-1\rangle$ orthogonal to $\mathbf{q}=\langle x,-1,2\rangle$? we want

$$
\begin{aligned}
& p \cdot q=0 \text { equivalent to } p \perp q \\
& 2 x-8-2=0
\end{aligned}
$$

$$
\text { when } \xrightarrow{x=5}
$$

2.25 Let $\mathbf{v}=\langle 3,-5,1\rangle$. Find the measure of the angles formed by each pair of vectors.
a. vend i $\langle 1,0,0\rangle$
b. \mathbf{v} and $\mathbf{j}\langle 0,1,0\rangle$

$$
\cos \theta=\frac{v_{0} i}{\|v\|\|i\|}=\frac{3}{\sqrt{3 F}}
$$

c. \mathbf{v} and $\mathbf{k}\langle 0,0,1\rangle$

$$
\|v\|=\sqrt{3^{2}+5^{2}+1^{2}}=\sqrt{35}
$$

$$
\cos \alpha=\frac{v_{0} j}{\|v\| j j \|}=\frac{-5}{\sqrt{35}}=\frac{-\sqrt{35}}{7}
$$

$$
\cos \gamma=\frac{1}{\sqrt{35}}
$$

Definition

The angles formed by a nonzero vector and the coordinate axes are called the direction angles for the vector (Figure 2.48). The cosines for these angles are called the direction cosines.

Definition

The vector projection of \mathbf{v} onto \mathbf{u} is the vector labeled $\operatorname{proj}_{\mathbf{u}} \mathbf{v}$ in Figure 2.50. It has the same initial point as \mathbf{u} and \mathbf{v} and the same direction as \mathbf{u}, and represents the component of \mathbf{v} that acts in the direction of \mathbf{u}. If θ represents the angle between \mathbf{u} and \mathbf{v}, then, by properties of triangles, we know the length of $\operatorname{proj}_{\mathbf{u}} \mathbf{v}$ is $\left\|\operatorname{proj}_{\mathbf{u}} \mathbf{v}\right\|=\|\mathbf{v}\| \cos \theta$.

$$
\begin{equation*}
\operatorname{proj}_{\mathbf{u}} \mathbf{v}=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|}\left(\frac{1}{\|\mathbf{u}\|} \mathbf{u}\right)=\frac{\mathbf{u} \cdot \mathbf{v}}{\| \mathbf{u n i t}^{2}} \mathbf{u} \text {. } \tag{2.6}
\end{equation*}
$$

The length of this vector is also known as the scalar projection of \mathbf{v} onto \mathbf{u} and is denoted by

$$
\begin{equation*}
\left\|\operatorname{proj}_{\mathbf{u}} \mathbf{v}\right\|=\operatorname{comp}_{\mathbf{u}} \mathbf{v}=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|} \tag{2.7}
\end{equation*}
$$

$$
\operatorname{comp}_{u} v=\|v\| \cos \theta=\|\times 1\| \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{\gamma}\|}
$$

2.27 Express $\mathbf{v}=5 \mathbf{i}-\mathbf{j}$ as a sum of orthogonal vectors such that one of the vectors has the same direction as

$w+\operatorname{proj}_{u}{ }^{v}=v$

$$
w=v-p r_{0} u_{u}^{v}
$$

$$
\begin{aligned}
\operatorname{proj}_{u} v=\frac{v \cdot u}{\|u\|^{2}} \cdot u & =\frac{20-2}{4^{2}+2^{2}} \cdot(4 i+2 j) \\
& =\frac{9}{10}(4 i+2 j)=3.6 i+1.8 j
\end{aligned}
$$

$$
\begin{aligned}
w & =(5 i-j)-(3.6 i+1.8 j) \\
& =1.4 i-2.8 j
\end{aligned}
$$

Definition

When a constant force is applied to an object so the object moves in a straight line from point P to point Q, the work W done by the force \mathbf{F}, acting at an angle θ from the line of motion, is given by

$$
\begin{equation*}
W=\mathbf{F} \cdot \overrightarrow{P Q}=\|\mathbf{F}\|\|\overrightarrow{P Q}\| \cos \theta \tag{2.8}
\end{equation*}
$$

2.29 A constant force of 30 lb is applied at an angle of 60° to pull a handcart 10 ft across the ground (Figure 2.52). What is the work done by this force?

$$
\begin{aligned}
W & =30 \times 10 \times \cos 60^{\circ} \\
& =190 \text { joule. }
\end{aligned}
$$

148. Determine all three-dimensional vectors u orthogonal to vector $\mathbf{v}=\mathbf{i}-\mathbf{j}-\mathbf{k}$. Express the answer in
component form.

$$
\begin{array}{ll}
V=\langle 1,-1,-1\rangle & U \cdot v=0 \\
U=\langle x, y, z\rangle & x-y-z=0 \quad \text { a plane in } 3-D .
\end{array}
$$

$$
\begin{aligned}
& \langle 1,1,0\rangle \\
& \langle 1,0,1\rangle \\
& \langle 2,1,1\rangle
\end{aligned}
$$

153. Determine the measure of angle A in triangle $A B C$, where $A(1,1,8), \quad B(4,-3,-4)$, and $C(-3,1,5)$.

$$
\begin{aligned}
& \cos \theta=\frac{\overrightarrow{A B} \cdot \overrightarrow{A C}}{\|A B\|\|A C\|} \\
& \overrightarrow{A B}=\langle 3,-4,-12\rangle \\
& =\frac{-12+0+36}{\sqrt{9+16+144} \sqrt{16+9}} \\
& =\frac{24}{13 \times 5}=\frac{24}{65} \\
& \theta=\arccos \left(\frac{24}{65}\right)=68.33^{\circ}
\end{aligned}
$$

places.

Definition
Let $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$. Then, the cross product $\mathbf{u} \times \mathbf{v}$ is vector

$$
\begin{align*}
\mathbf{u} \times \mathbf{v} & =\left(u_{2} v_{3}-u_{3} v_{2}\right) \mathbf{i}-\left(u_{1} v_{3}-u_{3} v_{1}\right) \mathbf{j}+\left(u_{1} v_{2}-u_{2} v_{1}\right) \mathbf{k} \tag{2.9}\\
& =\left\langle u_{2} v_{3}-u_{3} v_{2},-\left(u_{1} v_{3}-u_{3} v_{1}\right), u_{1} v_{2}-u_{2} v_{1}\right\rangle .
\end{align*}
$$

2.30 Find $\mathbf{p} \times \mathbf{q}$ for $\mathbf{p}=\langle 5,1,2\rangle$ and $\mathbf{q}=\langle-2,0,1\rangle$. Express the answer using standard unit

$$
\begin{aligned}
& u \times V=\left|\begin{array}{ccc}
i & j & k \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| \quad p \times q=\left|\begin{array}{ccc}
i & j & k \\
5 & 1 & 2 \\
-2 & 0 & 1
\end{array}\right|=i(1-0)-j(5+4)+k(0+2) \\
& =i\left|\begin{array}{ll}
u_{2} & u_{3} \\
v_{1} & v_{3}
\end{array}\right|-j\left|\begin{array}{ll}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right|+k\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right|
\end{aligned}
$$

Cross Product of Standard Unit Vectors

$\mathbf{i} \times \mathbf{j}=\mathbf{k} \quad \mathbf{j} \times \mathbf{i}=-\mathbf{k}$
$\mathbf{j} \times \mathbf{k}=\mathbf{i} \quad \mathbf{k} \times \mathbf{j}=-\mathbf{i}$
$\mathbf{k} \times \mathbf{i}=\mathbf{j} \quad \mathbf{i} \times \mathbf{k}=-\mathbf{j}$.

F 2.32 Find $(\mathbf{i} \times \mathbf{j}) \times(\mathbf{k} \times \mathbf{i})=k \times \mathbf{j}=-\mathbf{i}$

Theorem 2.6: Properties of the Cross Product

Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be vectors in space, and let c be a scalar.

i.	$\mathbf{u} \times \mathbf{v}$	$=-(\mathbf{v} \times \mathbf{u})$		Anticommutative property
ii.	$\mathbf{u} \times(\mathbf{v}+\mathbf{w})$	$=\mathbf{u} \times \mathbf{v}+\mathbf{u} \times \mathbf{w}$		Distributive property
iii.	$c(\mathbf{u} \times \mathbf{v})$	$=(c \mathbf{u}) \times \mathbf{v}=\mathbf{u} \times(c \mathbf{v})$		Multiplication by a constant
iv.	$\mathbf{u} \times \mathbf{0}$	$=\mathbf{0} \times \mathbf{u}=\mathbf{0}$		Cross product of the zero vector
v.	$\mathbf{v} \times \mathbf{v}$	$=\mathbf{0}$ vector		Cross product of a vector with itself
vi.	$\mathbf{u \bullet (\mathbf { v } \times \mathbf { w })}$	$=(\mathbf{u} \times \mathbf{v}) \bullet \mathbf{w}$		Scalar triple product

Theorem 2.7: Magnitude of the Cross Product
Let \mathbf{u} and \mathbf{v} be vectors, and let θ be the angle between them. Then $\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{u}\| \cdot\|\mathbf{v}\| \cdot \sin \theta$.
2.34 Use Properties of the Cross Product to find the magnitude of $\mathbf{u} \times \mathbf{v}$, where $\mathbf{u}=\langle-8,0,0\rangle$ and $\mathbf{v}=\langle 0,2,0\rangle$.

$$
\begin{aligned}
&\|u \times v\|=\|u\|\|v\| \sin \theta \\
&= 8 \times 2 \times \sin \frac{\pi}{2}=16 \\
& 4 \times v=-16 k=\langle 0,0,-16\rangle
\end{aligned}
$$

Rule: Cross Product Calculated by a Determinant
Let $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ be vectors. Then the cross product $\mathbf{u} \times \mathbf{v}$ is given by

$$
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|=\left|\begin{array}{ll}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right| \mathbf{k} .
$$

2.36 Use determinant notation to find $\mathbf{a} \times \mathbf{b}$, where $\mathbf{a}=\langle 8,2,3\rangle$ and $\mathbf{b}=\langle-1,0,4\rangle$.

$$
\begin{aligned}
a \times b=\left|\begin{array}{ccc}
i & j & k \\
8 & 2 & 3 \\
-1 & 0 & 4
\end{array}\right| & =i\left|\begin{array}{ll}
2 & 3 \\
0 & 4
\end{array}\right|-j\left|\begin{array}{cc}
8 & 3 \\
-1 & 4
\end{array}\right|+k\left|\begin{array}{cc}
8 & 2 \\
-1 & 0
\end{array}\right| \\
& =i 8-j(32+3)+k(0-(-2)) \\
& =8 i-35 j+2 k
\end{aligned}
$$

2.37 Find a unit vector orthogonal to both \mathbf{a} and \mathbf{b}, where $\mathbf{a}=\langle 4,0,3\rangle$ and $\mathbf{b}=\langle 1,1,4\rangle$.

$$
\begin{aligned}
& a \times b=\left|\begin{array}{lll}
i & j & k \\
4 & 0 & 3 \\
1 & 1 & 4
\end{array}\right|=-3 i-j 13+k 4 \\
& \frac{a \times b}{\|a \times b\|}=\frac{-3 i-13 j+4 k}{\sqrt{3^{2}+13^{2}+4^{2}}}=\frac{\langle-3,-13,4\rangle)}{\sqrt{194}}
\end{aligned}
$$

aunit vector

Theorem 2.8: Area of a Parallelogram
If we locate vectors \mathbf{u} and \mathbf{v} such that they form adjacent sides of a parallelogram, then the area of the parallelogram is given by $\|\mathbf{u} \times \mathbf{v}\|$ (Figure 2.57).
2.38 Find the area of the parallelogram $P Q R S$ with vertices $P(1,1,0), Q(7,1,0), R(9,4,2)$, and

$$
\|P Q \times P S\|=\text { Area }
$$

$$
\begin{aligned}
& \overrightarrow{P Q}=\langle 6,0,0\rangle \\
& \overrightarrow{B R}=\langle 6,0,0\rangle
\end{aligned}
$$

$$
\overrightarrow{P S}=\langle 2,3, q\rangle
$$

$$
A=\|u\| h=\|u\|\|v\| \sin \theta=\|u x v\|
$$

$$
\begin{aligned}
\left\|P_{Q \times P S}\right\| & =\sqrt{12^{2}+18^{2}} \\
& =6 \sqrt{2^{2}+3^{2}} \\
& =6 \sqrt{13}=\text { Area }
\end{aligned}
$$

Definition
The triple scalar product of vectors $\mathbf{u}, \quad \mathbf{v}$, and \mathbf{w} is $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$.
The triple scalar product of vectors $\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}+u_{3} \mathbf{k}, \quad \mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}$, and $\mathbf{w}=w_{1} \mathbf{i}+w_{2} \mathbf{j}+w_{3} \mathbf{k}$ is the determinant of the 3×3 matrix formed by the components of the vectors:

$$
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\left|\begin{array}{lll}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right| . \quad=(U \times V) \cdot \mathbf{W}
$$

Theorem 2.10: Volume of a Parallelepiped
The volume of a parallelepiped with adjacent edges given by the vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} is the absolute value of the triple scalar product:

See Figure 2.59.

$$
V=|\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})| .
$$

$$
\begin{aligned}
& \|\|\|\|v \times w\| \cos \theta \\
= & A \quad h
\end{aligned}
$$

E 2.39 Calculate the triple scalar product $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$, where $\mathbf{a}=\langle 2,-4,1\rangle, \quad \mathbf{b}=\langle 0,3,-1\rangle$, and $\mathbf{c}=\langle 5,-3,3\rangle$.

$$
\begin{aligned}
& \left|\begin{array}{rrr}
2 & -4 & 1 \\
0 & 3 & -1 \\
5 & -3 & 3
\end{array}\right|=(-1) 0 \cdot\left|\begin{array}{ll}
-4 & 1 \\
-3 & 3
\end{array}\right|+3\left|\begin{array}{ll}
2 & 1 \\
5 & 3
\end{array}\right|+1 \cdot\left|\begin{array}{cc}
2 & -4 \\
5 & -3
\end{array}\right| \\
& 15 \\
& 6
\end{aligned} \begin{array}{rrr}
2 & -4 & 18 \\
6 & 0 & 3
\end{array}-1 \geqslant 20.3+14=17 .
$$

2.40 Find the volume of the parallelepiped formed by the vectors $\mathbf{a}=3 \mathbf{i}+4 \mathbf{j}-\mathbf{k}, \quad \mathbf{b}=2 \mathbf{i}-\mathbf{j}-\mathbf{k}$, and $\mathbf{c}=3 \mathbf{j}+\mathbf{k}$.

$$
\begin{aligned}
& V=\alpha \cdot(b \times c)=\left|\begin{array}{ccc}
3 & 4 & -1 \\
2 & -1 & -1 \\
0 & 3 & 1
\end{array}\right| \\
& 0-3 \\
&-9 \\
& \frac{3}{-1} \\
& 4 \\
& \hline
\end{aligned}
$$

$$
=-9-(-1)=\xrightarrow{-8}
$$

volume is 8 unit 3.

