Lines and planes in space
guadric surfaces
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Figure 2%72 The angle between two planes has the same
measure as the angle between the normal vectors for the planes.




2.50 Find the measure of the angle between planes x+ y—z =3 and 3x —y + 3z = 5. Give the answer in

radians.and round to two decimal places.
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Theorem 2.14: Distance from a Point to a Plane

Let P(xq, yo- Z9) be a point. The distance from P to plane ax + by +cz+ k = 0 is given by
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@ 2.51 Find the distance between parallel planes S5x —2y+z=6 and 5x — 2y +z = —3.
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254. Find the distance between point A(4, 2, 5) and the l( PA X \l‘,

line of parametric equations x = —1 =f, y =-=f, 7 =12,
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257. Show that the line passing through points P(3, 1, 0)

-
and Q(1, 4, —3) is perpendicular to the line with equation V'- - P& = <_Z, z, ‘_3>
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Quadric Surfaces 7 2
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Figure 2.75 In three-dimensional space, the graph of equation  Figure 2.76 In three-dimensional space, the graph of equation

2 2 3 ; : g
x“+y~ =9 isacylinder with radius 3 centered on the z=x"isa cylinder, or a cylindrical surface with rulings

z-axis. It continues indefinitely in the positive and negative parallel to the y-axis.
directions.



@' 2.52  Sketch or use a graphing tool to view the graph of the cylindrical surface defined by equation z = yz.
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Definition

The traces of a surface are the cross-sections created when the surface intersects a plane parallel to one of the

coordinate planes.
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Figure 2.80 (a) This is one view of the graph of equation z = sin x. (b) To find the trace of the graph in the

xz-plane, set y = (). The trace is simply a two-dimensional sine wave.



Definition

Quadric surfaces are the graphs of equations that can be expressed in the form
Ax> 4+ By*+ Cz>+ Dxy+ Exz + Fyz+ Gx+ Hy + Jz+ K = 0.
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An ellipsoid is a surface described by an equation of the form
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2.53 A hyperboloid of one sheet is any surface that can be described with an equation of the form

2Ly 22 : : _ X2 oyt 2
2 + 2 — 3 = 1. Describe the traces of the hyperboloid of one sheet given by equation 32 + 33 — % = 1.
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Ellipsoid

x2 y2 ZZ
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Traces

In plane z = p: an ellipse
In plane y = @: an ellipse
In plane x = r: an ellipse

Ifa = b = ¢, then this surface is a sphere.

Hyperboloid of One Sheet
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Traces

In plane z = p: an ellipse

In plane y = @: a hyperbola

In plane x = r: a hyperbola

In the equation for this surface, two of the variables have
positive coefficients and one has a negative coefficient.
The axis of the surface corresponds to the variable with
the negative coefficient.




Hyperboloid of Two Sheets
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Traces

In plane z = p: an ellipse or the empty set (no trace)
In plane y = q: a hyperbola

In plane x = r: a hyperbola

In the equation for this surface, two of the variables have
negative coefficients and one has a positive coefficient.
The axis of the surface corresponds to the variable with a
positive coefficient. The surface does not intersect the
coordinate plane perpendicular to the axis.

Elliptic Cone
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Traces
In plane z = p: an ellipse_—

In plane y =G a hyperbola
In plane x = r: a hyperbola

In the xz - plane: a pair of lines that intersect at the origin
In the yz - plane: a pair of lines that intersect at the origin

The axis of the surface corresponds to the variable with a
negative coefficient. The traces in the coordinate planes
parallel to the axis are intersecting lines.




Elliptic Paraboloid
_ X Y
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Traces

In plane z = p: an ellipse
In plane y = q: a parabola
In plane x = r: a parabola

The axis of the surface corresponds to the linear variable.

Hyperbolic Paraboloid
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Traces

In plane z = p: a hyperbola
In plane y = q: a parabola
In plane x = r: a parabola

The axis of the surface corresponds to the linear variable.




@ 2.54  Identify the surface represented by equation 9x” + y? =z + 2z — 10 = 0.
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For the following exercises, rewrite the given equation of
the quadric surface in standard form. Identify the surface.

320, —dx? +2"3y +z 100




For the following exercises, rewrite the given equation of
the quadric surface in standard form. Identify the surface.

326. 63x2+7y?+9z2—63 =0
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For the following exercises, match the given quadric
surface with its corresponding equation in standard form.

2
A A2V z2 _ |
4 o 12 313. Hyperboloid of two sheets
2 2 2
b. & —3‘(; - =1 314. Ellipsoid
2 2 315. Elliptic paraboloid

2
C. +')£._) + fz =1
316. Hyperbolic paraboloid

X

A

Q_ 2
d. z7=4x"+ 3y 317. Hyperboloid of one sheet

v2 2
e. z=4x"—-y / 318. Elliptic cone

f. dx?+y?>—z2=0



For the following exercises, the equation of a quadric
surface is given.
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a. Use the method of completing the square to write (X‘l‘ 3) g z(% Z) - ,é

the equation in standard form.

b. Identify the surface.
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347. Determine the intersection points of elliptic cone

X — y2 z2 =0 with the line of symmetric equations
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