Lines and planes in space quadric surfaces

Finding the Angle between Two Planes $\quad n=\langle a, b, c\rangle \quad a x+b y+c z+d_{1}=0$

Figure 2.72 The angle between two planes has the same
measure as the angle between the normal vectors for the planes.

2.50 Find the measure of the angle between planes $x+y-z=3$ and $3 x-y+3 z=5$. Give the answer in radians and round to two decimal places.

$$
\left\|n_{f}\right\|=\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3}
$$

$$
\left\|n_{2}\right\|=\sqrt{3^{2}+1^{2}+3^{2}}=\sqrt{19}
$$

$$
\begin{gathered}
n_{1}=\langle 1,1,-1\rangle \quad n_{2}=\langle 3,-1,3\rangle \\
\cos \theta=\frac{\left|n_{1} \cdot n_{2}\right|}{\left\|n_{1}\right\|\left\|n_{2}\right\|}=\frac{|3-1-3|}{\sqrt{3} \sqrt{19}}=\frac{\sqrt{57}}{57} \approx 0.13 \\
\theta=\cos ^{-1}\left(\frac{\sqrt{57}}{57}\right) \cong 1.44 \text { radian } \\
\\
82.39 \text { degree }
\end{gathered}
$$

Theorem 2.14: Distance from a Point to a Plane
Let $P\left(x_{0}, y_{0}, z_{0}\right)$ be a point. The distance from P to plane $a x+b v+c z+k=0$ is given by

$$
\begin{aligned}
& d=\frac{\left|a x_{0}+b y_{0}+c z_{0}+k\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} \text {. } Q \text { satisfies place equation. } \\
& \left\langle x_{0}-x_{1}, y_{0}-y_{1}, z_{0}-z_{1}\right\rangle \cdot\left\langle a, b_{1} c\right\rangle \quad a x_{1}+b y_{1}+c z_{1}+k=0 \\
& d=\frac{\overrightarrow{Q P} \bullet \mathbf{n}}{\|\mathbf{n}\|}=\frac{\left|a\left(x_{0}-x_{1}\right)+b\left(y_{0}-y_{1}\right)+c\left(z_{0}-z_{1}\right)\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}=\frac{\left|a x_{0}+b y_{0}+c z_{0}+k\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} \text {. } \\
& \text { P } \\
& d=\operatorname{comp} \overrightarrow{\bar{R} P}=\|Q P\| \cos \theta \\
& \overrightarrow{Q P} \cdot \vec{n}=\|Q P\|\|n\| \cos \theta
\end{aligned}
$$

2.51 Find the distance between parallel planes $5 x-2 y+z=6$ and $5 x-2 y+z=-3$.

$$
x=0=y
$$

$$
n=\langle 5,-2,1\rangle
$$

Let $P(0,0,6)$ on the frost plane

$$
d=\frac{|5.0-2.0+6+3|}{\sqrt{5^{2}+2^{2}+1}}=\frac{9}{\sqrt{30}}=\frac{3 \sqrt{30}}{10}
$$

254. Find the distance between point $A(4,2,5)$ and the line of parametric equations $x=-1-t, y=-t, z=2$, $t \in \mathbb{R}$.

$$
\vec{v}=\langle-1,-1,0\rangle
$$

$$
\begin{aligned}
d & =\frac{\|\overrightarrow{P A} \times \vec{V}\|}{\|\vec{V}\|} \\
& =\frac{\|\langle 3,-3,-3\rangle\|}{\sqrt{1^{2}+1^{2}}} \\
& =\frac{\sqrt{3^{2}+3^{2}+3^{2}}}{\sqrt{2}}=\frac{3 \sqrt{3}}{\sqrt{2}} \\
& =\frac{3 \sqrt{6}}{2}
\end{aligned}
$$

257. Show that the line passing through points $P(3,1,0)$ and $Q(1,4,-3)$ is perpendicular to the line with equation

$$
v_{1}=\overrightarrow{P Q}=\langle-2,3,-3\rangle
$$

$$
x=3 t, y=3+8 t, z=-7+6 t,
$$

$$
\begin{gathered}
V_{v}=\langle 3,8,6\rangle \\
V_{1} \cdot V_{2}=-2(3)+3 \times 8+(-3) 6=0 . \\
l_{1}:\langle 3,1,0\rangle+s\langle-2,3,-3\rangle \\
x=3-2 s=3 t \quad 3-2 \times \frac{34}{76}=3 \times \frac{5}{14} \\
y=1+3 s=3+8 t] \quad=-4+12 t \quad t=5 / 44 \\
z=-3 s=-7+6 t] \quad 1+3 s=3+8 \times \frac{5}{14} \\
1+3 s=3+\frac{4 \times 5}{7} \quad s=\frac{34}{7} \quad s=2, ~
\end{gathered}
$$

Quadric Surfaces

Figure 2.75 In three-dimensional space, the graph of equation $x^{2}+y^{2}=9$ is a cylinder with radius 3 centered on the z-axis. It continues indefinitely in the positive and negative directions.

Figure 2.76 In three-dimensional space, the graph of equation $z=x^{3}$ is a cylinder, or a cylindrical surface with rulings parallel to the y-axis.
2.52 Sketch or use a graphing tool to view the graph of the cylindrical surface defined by equation $z=y^{2}$.

Definition

The traces of a surface are the cross-sections created when the surface intersects a plane parallel to one of the coordinate planes.

(a)

(b)

Figure 2.80 (a) This is one view of the graph of equation $z=\sin x$. (b) To find the trace of the graph in the $x z$-plane, set $y=0$. The trace is simply a two-dimensional sine wave.

Quadric surfaces are the graphs of equations that can be expressed in the form

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E x z+F y z+G x+H y+J z+K=0 .
$$

An ellipsoid is a surface described by an equation of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$

2.53 A hyperboloid of one sheet is any surface that can be described with an equation of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$. Describe the traces of the hyperboloid of one sheet given by equation $\frac{x^{2}}{3^{2}}+\frac{y^{2}}{2^{2}}-\frac{z^{2}}{5^{2}}=1$.

$$
x=0 \quad \frac{y^{2}}{2^{2}}-\frac{z^{2}}{5^{2}}=1
$$

$y=0$ hyperbola
$z=0 \quad \frac{x^{2}}{9}+\frac{y^{2}}{4}=1 \quad$ ellipse

$$
\frac{x^{2}}{9}+\frac{y^{2}}{4}=z
$$

$z=1$ ellipse
$z=2$ larger ellipse

$$
x=0, z=\frac{y^{2}}{4}
$$

similarly for any other x-value. or y-value. $(x z)$

Ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

Traces

In plane $z=p$: an ellipse
In plane $y=q$: an ellipse
In plane $x=r$: an ellipse

If $a=b=c$, then this surface is a sphere.

Hyperboloid of One Sheet

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$

Traces
In plane $z=p$: an ellipse
In plane $y=q$: a hyperbola
In plane $x=r$: a hyperbola
In the equation for this surface, two of the variables have positive coefficients and one has a negative coefficient. The axis of the surface corresponds to the variable with the negative coefficient.

$$
\frac{z^{2}}{c^{2}}-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

Traces

In plane $z=p$: an ellipse or the empty set (no trace)
In plane $y=q$: a hyperbola
In plane $x=r$: a hyperbola
In the equation for this surface, two of the variables have negative coefficients and one has a positive coefficient. The axis of the surface corresponds to the variable with a positive coefficient. The surface does not intersect the coordinate plane perpendicular to the axis.

Elliptic Cone

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0
$$

Traces

In plane $z=p$: an ellipse
In plane $y=q:$ a hyperbola
In plane $x=r$: a hyperbola
In the $x z$ - plane: a pair of lines that intersect at the origin In the $y z$ - plane: a pair of lines that intersect at the origin

The axis of the surface corresponds to the variable with a negative coefficient. The traces in the coordinate planes parallel to the axis are intersecting lines.

Elliptic Paraboloid

$$
z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}
$$

Traces

In plane $z=p$: an ellipse
In plane $y=q$: a parabola
In plane $x=r$: a parabola
The axis of the surface corresponds to the linear variable.

Hyperbolic Paraboloid

$$
z=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}
$$

Traces

In plane $z=p$: a hyperbola
In plane $y=q$: a parabola
In plane $x=r$: a parabola
The axis of the surface corresponds to the linear variable.

2.54 Identify the surface represented by equation $9 x^{2}+y^{2}-z^{2}+2 z-10=0$.

$$
\begin{aligned}
& 9 x^{2}+y^{2}-\left(z^{2}-2 z+1\right)+1-10=0 \\
& x^{2}+\frac{y^{2}}{9}-\frac{(z-1)^{2}}{9}=1_{4} \quad \text { hyperboloid }
\end{aligned}
$$

of one sheet.

For the following exercises, rewrite the given equation of the quadric surface in standard form. Identify the surface.
320. $-4 x^{2}+25 y^{2}+z^{2}=100$

$$
-\frac{x^{2}}{25}+\frac{y^{2}}{4}+\frac{z^{2}}{100}=1
$$

hyperboloid of one sheet.

For the following exercises, rewrite the given equation of quadric surface in standard form. Identify the surface.

$$
x^{2}+\frac{y^{2}}{9}+\frac{z^{2}}{7}=1 \quad \text { ellipsoid. }
$$

For the following exercises, match the given quadric surface with its corresponding equation in standard form.
a. $\frac{x^{2}}{4}+\frac{y^{2}}{9}-\frac{z^{2}}{12}=1$
b. $\frac{x^{2}}{4}-\frac{y^{2}}{9}-\frac{z^{2}}{12}=1$

313. Hyperboloid of two sheets
c. $\frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{12}=1$
d. $\quad z=4 x^{2}+3 y^{2}$

314. Ellipsoid
315. Elliptic paraboloid
316. Hyperbolic paraboloid
e. $z=4 x^{2}-y^{2}$ \qquad 317. Hyperboloid of one sheet
f. $4 x^{2}+y^{2}-z^{2}=0$

For the following exercises, the equation of a quadric surface is given.

$$
(x+3)^{2}+2(z-2)^{2}=16
$$

a. Use the method of completing the square to write
the equation in standard form.
b. Identify the surface.
339. $x^{2}+2 z^{2}+6 x-8 z+1=0$

$$
\left(x^{2}+6 x+9\right)-9+2\left(z^{2}-4 z+4\right)-8+1=0
$$ cylindrical ellipse $\frac{(x+3)^{2}}{16}+\frac{(z-2)^{2}}{8}=1$

344. $x^{2}-y^{2}+z^{2}-12 z+2 x+37=0$

$$
(x+1)^{2}-y^{2}+(z-6)^{2}-1-36+37=0
$$

$(x+1)^{2}-y^{2}+(z-6)^{2}=0 \quad$ elliptic cone
347. Determine the intersection points of elliptic cone
$x^{2}-y^{2}-z^{2}=0$ with the line of symmetric equations

$$
\begin{aligned}
& \frac{x-1}{2}=\frac{y+1}{3}=z=t \\
& x=1+2 t \\
& y=-1+3 t \\
& z=t
\end{aligned}
$$

$$
\begin{aligned}
& (1+2 t)^{2}-(-1+3 t)^{2}-t^{2}=0 \\
& 4 t^{2}+4 t+1-9 t^{2}+6 t-1-t^{2}=0 \\
& -6 t^{2}+10 t=0 \\
& -2 t(3 t-5)=0 \\
& t=0 \text { OR } \quad t=\frac{5}{3} \\
& (1,-1,0) \quad\left(\frac{13}{3}, 4, \frac{5}{3}\right)
\end{aligned}
$$

