Review Questions -1

Exercise 1. Find $|\vec{u} + \vec{v}|$ if $\vec{u} = \langle 2, -1, 1 \rangle$ and $\vec{v} = \langle -1, 3, 13 \rangle$.

Solution. $\vec{u} + \vec{v} = \langle 2 - 1, -1 + 3, 1 + 13 \rangle = \langle 1, 2, 14 \rangle$ then $|\vec{u} + \vec{v}| = \sqrt{1^2 + 2^2 + 14^2} = \sqrt{201}$.

Exercise 2. Determine whether the vectors $\vec{u} = \langle 1, 2, 2 \rangle$, $\vec{v} = \langle \sqrt{2}, 1, -1 \rangle$ are orthogonal, parallel or neither. If neither, also find the angle between two vectors.

Solution. $\vec{u} \cdot \vec{v} = \sqrt{2} + 2 - 2 = \sqrt{2}$, the vectors are neither orthogonal nor parallel. Let θ be the angle between the vectors. Then,

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| |\vec{v}|} = \frac{\sqrt{2}}{\sqrt{1 + 2^2 + 2^2}\sqrt{2 + 1 + 1}} = \frac{\sqrt{2}}{3 \times 2} = \frac{\sqrt{2}}{6}.$$

Therefore, $\theta = \arccos \frac{\sqrt{2}}{6}$.

Exercise 3. Find $\cos \widehat{ABC}$ if A(1,4), B(2,2) and C(3,5). Find the measure of the angle \widehat{ABC} .

Solution. \widehat{ABC} is the angle between the vectors \vec{BA} and \vec{BC} , which are $\vec{BA} = \vec{A} - \vec{B} = \langle -1, 2 \rangle$ and $\vec{BC} = \vec{C} - \vec{B} = \langle 1, 3 \rangle$. Therefore,

$$\cos \widehat{ABC} = \frac{\overrightarrow{BA} \cdot \overrightarrow{BC}}{\left| \overrightarrow{BA} \right| \left| \overrightarrow{BC} \right|} = \frac{-1+6}{\sqrt{5}\sqrt{10}} = \frac{5}{5\sqrt{2}} = \frac{\sqrt{2}}{2}.$$

Hence, $m\left(\widehat{ABC}\right) = 45^{\circ}$.

Exercise 4. Find $\cos \widehat{BCA}$ if A(1,4), B(2,2) and C(3,5). Find the measure of the angle \widehat{ABC} .

Solution. \widehat{BCA} is the angle between the vectors \overrightarrow{CB} and \overrightarrow{CA} , which are $\overrightarrow{CB} = \langle -1, -3 \rangle$ and $\overrightarrow{CA} = \langle -2, -1 \rangle$. Therefore,

$$\cos \widehat{BCA} = \frac{\vec{CB} \cdot \vec{CA}}{\left|\vec{CB}\right| \left|\vec{CA}\right|} = \frac{2+3}{\sqrt{10}\sqrt{5}} = \frac{5}{5\sqrt{2}} = \frac{\sqrt{2}}{2}.$$

Hence, $m\left(\widehat{BCA}\right) = 45^{\circ}$. In fact, the triangle $\stackrel{\triangle}{ABC}$ is a right triangle. We may verify that $\overrightarrow{AB} \cdot \overrightarrow{AC} = 0$.

Exercise 5. Find the vector projection $proj_{\vec{v}}\vec{u}$ if $\vec{u} = \langle 2, -1 \rangle$ and $\vec{v} = \langle 1, 3 \rangle$.

Solution.

$$proj_{\vec{v}}\vec{u} = \frac{\vec{u}\cdot\vec{v}}{\left|\vec{v}\right|^2}\vec{v} = \frac{-1}{10}\vec{v} = \left\langle\frac{-1}{10},\frac{3}{10}\right\rangle$$

Exercise 6. Find the vector projection $proj_{\vec{v}}\vec{u}$ if $\vec{u} = \langle 0, 1, 2 \rangle$ and $\vec{v} = \langle 1, 1, \sqrt{2} \rangle$. Solution.

$$proj_{\vec{v}}\vec{u} = \frac{\vec{u}\cdot\vec{v}}{\left|\vec{v}\right|^2}\vec{v} = \frac{0+1+2\sqrt{2}}{4}\vec{v} = \left\langle\frac{1+2\sqrt{2}}{4}, \frac{1+2\sqrt{2}}{4}, \frac{\sqrt{2}+4}{4}\right\rangle$$

Exercise 7. Find $|\vec{u} \times \vec{v}|$ if $|\vec{u}| = 5$, $|\vec{v}| = 6$, and the angle between \vec{u} and \vec{v} is 30° .

Solution. $|\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| \sin \theta$ where θ is the angle between the vectors. Therefore,

 $|\vec{u} \times \vec{v}| = 5 \times 6 \sin 30^\circ = 15.$

Exercise 8. Find symmetric equations of the line through the point $P_0(-2, 1, 3)$ and parallel to the line x = 2+t, y = -1+5t, z = 4t.

Solution. The line x = 2 + t, y = -1 + 5t, z = 4t has vector equation (2, -1, 0) + t (1, 5, 4) and direction vector $\vec{u} = (1, 5, 4)$. Therefore, the line parallel to this through P_0 will have

vector equation
$$\langle x, y, z \rangle = \langle -2, 1, 3 \rangle + t \langle 1, 5, 4 \rangle$$
,
parametric equation $x = -2 + t$, $y = 1 + 5t$, $z = 3 + 4t$ and
symmetric equations $\frac{x+2}{1} = \frac{y-1}{5} = \frac{z-3}{4} = t$.

Exercise 9. Find a vector equation of the line through the points A(2,4,3) and B(1,2,-1). Also give parametric equations for the line. Where does the line intersect xz-plane?

Solution. $\vec{BA} = \vec{A} - \vec{B} = \langle 1, 2, 4 \rangle$ is a direction vector for the line. Therefore, it has

vector equation $\langle x, y, z \rangle = \langle 2, 4, 3 \rangle + t \langle 1, 2, 4 \rangle$, parametric equation x = 2 + t, y = 4 + 2t, z = 3 + 4t

The points on xz-plane has y-coordinate 0. So let y = 0 = 4 + 2t implies the line intersects with xz-plane when t = -2 which corresponds the point (0, 0, -5).

Exercise 10. Determine whether the planes 2x + y - z = 1 and x + y + 3z = 2 are parallel, perpendicular or neither. If neither, also find the angle between two planes.

Solution. The angle between the planes is equal to the angle between the normal vectors. The normal vectors are $N_1 = \langle 2, 1, -1 \rangle$ and $N_2 = \langle 1, 1, 3 \rangle$. The dot product $N_1 \cdot N_2 = 2 + 1 - 3 = 0$, which implies $N_1 \perp N_2$. Therefore, the planes are perpendicular to each other.

Exercise 11. Determine whether the planes $\sqrt{2}x + y + z = 1$ and $\sqrt{2}x - y + z = 5$ are parallel, perpendicular or neither. If neither, also find the angle between two planes.

Solution. Let θ be the angle between the planes, which is also the angle between their normal vectors $N_1 = \langle \sqrt{2}, 1, 1 \rangle$ and $N_2 = \langle \sqrt{2}, -1, 1 \rangle$. Then

$$\cos \theta = \frac{N_1 \cdot N_2}{|N_1| \, |N_2|} = \frac{2 - 1 + 1}{\sqrt{2 + 1 + 1}\sqrt{2 + 1 + 1}} = \frac{2}{4} = \frac{1}{2}.$$

Hence, $\theta = \frac{\pi}{3}$. The planes are neither parallel nor perpendicular. The angle between the planes is 60°.

Exercise 12. Find the distance from the point P(4,5,6) to the plane 2x - y + z = 6.

Solution. The distance between the point $P_0(x_0, y_0, z_0)$ and the plane with equation Ax + By + Cz + D = 0 is given by the formula

$$d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{|\sqrt{A^2 + B^2 + C^2}|}$$

Therefore, the distance between the given point and the plane is

$$\frac{2 \times 4 - 5 + 6 - 6|}{|\sqrt{2^2 + 1^2 + 1^2}|} = \frac{3}{\sqrt{6}} = \frac{\sqrt{6}}{2}$$

Exercise 13. Let \mathcal{P} be the plane containing the point (2, 1, 1) and perpendicular to x-axis. Find the intersection of the plane \mathcal{P} with the sphere of radius 3 centered at the origin?

Solution. Any plane perpendicular to x-axis will have $\mathbf{i} = \langle 1, 0, 0 \rangle$ as its normal vector. Therefore, it will have equation x + D = 0. Since it passes through the point (2, 1, 1) we get D = -2. In other words, the plane has equation x = 2. Now the sphere of radius 3 has equation

> $x^2 + y^2 + z^2 = 3^2$, substitute x = 2 to find the intersection, we obtain $y^2 + z^2 = 5$ and x = 2.

That is the circle of radius $\sqrt{5}$ centered at (2,0,0) and perpendicular to x-axis.

Exercise 14. Let \mathcal{P} be the plane with equation x + 2y + z = 10 and l be the line through the points A(1, 0, -1) and B(2, 1, 1). Find the point of intersection if they intersect.

Solution. The line *l* has equation $\langle x, y, z \rangle = \vec{A} + t\vec{AB} = \langle 1, 0, -1 \rangle + t \langle 1, 1, 2 \rangle$. A parametric form of the line equation is

$$x = 1 + t, \quad y = t, \quad z = -1 + 2t$$

The line intersects with the plane. Since if they were parallel the direction vector (1,1,2) would be perpendicular to the normal vector (1,2,1).

$$\langle 1, 1, 2 \rangle \cdot \langle 1, 2, 1 \rangle = 1 + 2 + 2 = 5 \neq 0.$$

We may find the intersection point by common solution. Substitute the parametric equations into the equation of the plane

$$1 + t + 2t + 1 + 2t = 10,$$

$$5t + 2 = 10,$$

$$t = 8/5$$

$$(13 8)$$

So, the intersection point is x = 1 + 8/5, y = 8/5, z = 1 + 16/5, that is $\left(\frac{13}{5}, \frac{8}{5}, \frac{21}{5}\right)$.

Exercise 15. By using triple product, find the volume of the parallelepiped determined by the vectors $\vec{u} = \langle 0, 2, 1 \rangle$, $\vec{v} = \langle -1, 3, 0 \rangle$ and $\vec{w} = \langle 2, 1, -1 \rangle$.

Solution. The volume of the parallelepiped is given by the triple product (the absolute value of the determinant)

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = \begin{vmatrix} 0 & 2 & 1 \\ -1 & 3 & 0 \\ 2 & 1 & -1 \end{vmatrix} = 0 \begin{vmatrix} 3 & 0 \\ 1 & -1 \end{vmatrix} - 2 \begin{vmatrix} -1 & 0 \\ 2 & -1 \end{vmatrix} + 1 \begin{vmatrix} -1 & 3 \\ 2 & 1 \end{vmatrix} = 0 - 2 - 7 = -9, \text{ or by Sarrus rule.}$$

As a result, we see that the volume is 9 unit^3 .

Exercise 16. Find an equation of the plane containing the given triangle.

Solution. The cross product of any non-parallel pair of vectors in the plane will give us a normal vector of the plane. Let A(5,0,0), B(0,4,0) and C(0,0,3) be the vertices of the given triangle. Then $\vec{AB} = \langle -5,4,0 \rangle$ and $\vec{AC} = \langle -5,0,3 \rangle$. Therefore

$$\vec{N} = \vec{AB} \times \vec{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -5 & 4 & 0 \\ -5 & 0 & 3 \end{vmatrix} = \mathbf{i} \begin{vmatrix} 4 & 0 \\ 0 & 3 \end{vmatrix} - \mathbf{j} \begin{vmatrix} -5 & 0 \\ -5 & 3 \end{vmatrix} + \mathbf{k} \begin{vmatrix} -5 & 4 \\ -5 & 0 \end{vmatrix} = \langle 12, 15, 20 \rangle$$

The equation of the plane is 12x + 15y + 20y + D = 0 for some D. We obtain 60 + D = 0 when we substitute the coordinates of A. Hence, the equation of the plane is 12x + 15y + 20y - 60 = 0.

Exercise 17. Calculate the dot product $(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v})$ if $\vec{u} = i + 3j + k$ and $\vec{v} = 5i - j - 2k$. Is the angle between the vectors $\vec{u} + \vec{v}$ and $\vec{u} - \vec{v}$ obtuse or acute? Find the angle between \vec{u} and \vec{v} .

Solution. $\vec{u} + \vec{v} = \langle 6, 2, -1 \rangle$ and $\vec{u} - \vec{v} = \langle -4, 4, 3 \rangle$. Therefore,

$$(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) = \langle 6, 2, -1 \rangle \cdot \langle -4, 4, 3 \rangle = -24 + 8 - 3 = -19$$

The dot product is negative which implies that the cosine value of the angle between these vectors is negative. So, the angle between these is obtuse. On the other hand,

$$\vec{u} \cdot \vec{v} = \langle 1, 3, 1 \rangle \cdot \langle 5, -1, -2 \rangle = 5 - 3 - 2 = 0,$$

which implies $\vec{u} \perp \vec{v}$; the vectors are orthogonal.

Exercise 18. Calculate the cross product $(\vec{u} + 2\vec{v}) \times (2\vec{u} - \vec{v})$ if $\vec{u} = j + 2k$ and $\vec{v} = 2i - j + k$.

Solution. $\vec{u} + 2\vec{v} = 4i - j + 4k = \langle 4, -1, 4 \rangle$ and $2\vec{u} - \vec{v} = -2i + 3j + 3k = \langle -2, 3, 3 \rangle$

$$(\vec{u} + 2\vec{v}) \times (2\vec{u} - \vec{v}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & -1 & 4 \\ -2 & 3 & 3 \end{vmatrix} = \mathbf{i} \begin{vmatrix} -1 & 4 \\ 3 & 3 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 4 & 4 \\ -2 & 3 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 4 & -1 \\ -2 & 3 \end{vmatrix}$$

= $\mathbf{i} (-15) - \mathbf{j} (20) + \mathbf{k} (10) = \langle -15, -20, 10 \rangle.$

Exercise 19. Find the limit $\lim_{t \to 2} \left\langle t^2, \frac{\sin(t-2)}{t^2-4}, e^t \right\rangle$.

Solution. $\lim_{t \to 2} t^2 = 4$, $\lim_{t \to 2} \frac{\sin(t-2)}{t^2 - 4} = \lim_{t \to 2} \frac{\sin(t-2)}{(t-2)(t+2)} = \frac{1}{4}$ and $\lim_{t \to 2} e^t = e^2$. Therefore,

$$\lim_{t \to 2} \left\langle t^2, \frac{\sin\left(t-2\right)}{t^2-4}, e^t \right\rangle = \left\langle 4, \frac{1}{4}, e^2 \right\rangle$$

Exercise 20. For the vector function $\vec{r}(t) = \langle t^2, \cos t, e^{2t} \rangle$ find the second order derivative when t = 0. In other words, $\vec{r}''(0) =$? **Solution.** The first order derivative of the function is $\vec{r}'(t) = \langle 2t, -\sin t, 2e^{2t} \rangle$. Then,

$$\vec{r}''(t) = \langle 2, -\cos t, 4e^{2t} \rangle$$
 and $\vec{r}''(0) = \langle 2, -1, 4 \rangle$.

Exercise 21. Find the rate of change for vector function $\vec{r}(t) = \langle \sin t, \cos t, \tan t \rangle$ when $t = \pi/6$. Solution. The rate of change for $\vec{r}(t)$ when $t = \pi/6$ is the first derivative at the given value $\vec{r}'(\pi/6)$.

$$\vec{r}'(t) = \left\langle \cos t, -\sin t, \sec^2 t \right\rangle$$
 and $\vec{r}'(\pi/6) = \left\langle \frac{\sqrt{3}}{2}, -\frac{1}{2}, \frac{4}{3} \right\rangle$

Exercise 22. Determine whether the vector-valued function $\vec{r}(t) = \left\langle \frac{1}{t+2}, \ln(t-2), t^2 \right\rangle$ is continuous or not at t = 2.

Solution. The function is undefined at t = 2, since the y-component $y(t) = \ln(t-2)$ is undefined for t = 2. So, the function is not continuous at t = 2.

Exercise 23. Find the vector function $\vec{r}(t)$ if $\vec{r}'(t) = \langle 2t, \cos t, e^t \rangle$ and $\vec{r}(0) = \langle 1, 2, 3 \rangle$. **Solution.** $\vec{r}(t) = \int \vec{r}'(t) dt = \langle t^2 + c_1, \sin t + c_2, e^t + c_3 \rangle = \langle t^2, \sin t, e^t \rangle + \langle c_1, c_2, c_3 \rangle$. We find the integration constant by

$$\vec{r}(0) = \langle 1, 2, 3 \rangle = \langle 0, 0, 1 \rangle + \langle c_1, c_2, c_3 \rangle, \text{ implies } \langle c_1, c_2, c_3 \rangle = \langle 1, 2, 2 \rangle,$$

Therefore, $\vec{r}(t) = \langle t^2 + 1, \sin t + 2, e^t + 2 \rangle.$

Exercise 24. Evaluate the integral $\int_0^1 \left(t \mathbf{i} + \frac{2t}{1+t^2} \mathbf{j} + e^t \mathbf{k} \right) dt$. Solution.

$$\int_{0}^{1} \left(t \mathbf{i} + \frac{2t}{1+t^{2}} \, \mathbf{j} + e^{t} \mathbf{k} \right) = \left(\mathbf{i} \frac{t^{2}}{2} + \mathbf{j} \ln \left(1 + t^{2} \right) + \mathbf{k} e^{t} \right) \Big|_{t=0}^{t=1}$$
$$= \frac{\mathbf{i}}{2} + (\ln 2) \, \mathbf{j} + (e-1) \, \mathbf{k} = \left\langle \frac{1}{2}, \ln 2, e-1 \right\rangle$$

Exercise 25. The velocity of an object is given by $\vec{v}(t) = \left\langle 2t, \sin t, \frac{1}{t+1} \right\rangle$ and $\vec{r}(0) = \langle 1, 1, 1 \rangle$. Find the position function $\vec{r}(t)$. **Solution.** The velocity is the first order derivative of the position function; $\vec{v}(t) = \vec{r}'(t)$. Then,

$$\vec{r}(t) = \int \vec{r}'(t) dt = \int \vec{v}(t) dt = \langle t^2 + c_1, -\cos t + c_2, \ln(t+1) + c_3 \rangle$$

$$\vec{r}(0) = \langle c_1, c_2 - 1, c_3 \rangle = \langle 1, 1, 1 \rangle \text{ implies } c_1 = 1, \ c_2 = 2 \text{ and } c_3 = 1,$$

Therefore, $\vec{r}(t) = \langle t^2 + 1, -\cos t + 2, \ln(t+1) + 1 \rangle$.

Exercise 26. Find the length of the curve $\vec{r}(t) = \langle \sqrt{5}t, \cos 2t, -\sin 2t \rangle$ from t = 0 to $t = 2\pi$.

Solution. The arclength is $\int_{0}^{2\pi} |\vec{r}'(t)| dt$,

$$\vec{r}'(t) = \left\langle \sqrt{5}, -2\sin 2t, -2\cos 2t \right\rangle and |\vec{r}'(t)| = \sqrt{5 + 4\left(\sin^2 2t + \cos^2 2t\right)} = 3$$
$$S = \int_0^{2\pi} 3dt = 3t|_{t=0}^{t=2\pi} = 6\pi.$$

Exercise 27. Find the unit tangent vector $\vec{T}(t)$ to the curve $\vec{r}(t) = \langle t, \cos t, \sin t \rangle$ at $t = \pi/3$. Solution. $\vec{r}'(t) = \langle 1, -\sin t, \cos t \rangle$ and $|\vec{r}'(t)| = \sqrt{1 + \sin^2 t + \cos^2 t} = \sqrt{2}$. The unit tangent vector is

$$\vec{T}(t) = \frac{\vec{r}'(t)}{|\vec{r}'(t)|} = \frac{\langle 1, -\sin t, \cos t \rangle}{\sqrt{2}},$$

$$\vec{T}(\pi/3) = \left\langle \frac{1}{\sqrt{2}}, -\frac{\sqrt{3}}{2\sqrt{2}}, \frac{1}{2\sqrt{2}} \right\rangle = \left\langle \frac{\sqrt{2}}{2}, \frac{\sqrt{6}}{4}, \frac{\sqrt{2}}{4} \right\rangle$$

Exercise 28. Find the curvature of the function $\vec{r}(t) = \langle t, t^2, 0 \rangle$ at t = 1.

Solution. We have various formulas for the curvature. For this question, we are going to use

$$\kappa = \frac{\left|\vec{r}'(t) \times \vec{r}''(t)\right|}{\left|\vec{r}'(t)\right|^3}$$

We have $\vec{r}~'(t)=\langle 1,2t,0\rangle$ and $\vec{r}~''(t)=\langle 0,2,0\rangle\,,$ which gives

$$\vec{r}'(t) \times \vec{r}''(t) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2t & 0 \\ 0 & 2 & 0 \end{vmatrix} = 2\mathbf{k},$$

$$\kappa = \frac{2}{\sqrt{1+4t^2}} \text{ when } t = 1 \text{ we get } \frac{2}{5\sqrt{5}} = \frac{2\sqrt{5}}{25}.$$